改进球形体素局部形状描述符的跨源点云配准
CSTR:
作者:
作者单位:

1.郑州大学 地球科学与技术学院,河南 郑州 450001;2.华中师范大学 城市与环境科学学院,湖北 武汉 430079

作者简介:

通讯作者:

中图分类号:

TP391

基金项目:

国家自然科学基金(42241759); 国家自然科学基金青年基金(42001405); 河南省自然科学基金(242300420212); 中国博士后科学基金(2024M752938)


Cross-source point cloud registration using an improved spherical voxel-based local shape descriptor
Author:
Affiliation:

1.School of Geo-Science &2.Technology, Zhengzhou University, Zhengzhou 450001, China;3.College of Urban and Environmental Sciences, Central China Normal University, Wuhan 430079, China

Fund Project:

Supported by the National Natural Science Foundation of China (42241759); the National Natural Science Foundation of China Youth Fund (42001405); the Natural Science Foundation of Henan Province(CN) (242300420212); the China Postdoctoral Science Foundation(2024M752938)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对跨源点云质量差异导致的配准难题,本文提出一种改进球形体素局部形状描述符(Spherical Voxel Center Descriptor,SVCD)的跨源点云配准方法。SVCD通过双权重局部参考框架(Local Reference Frame,LRF)计算和球形体素分割,有效克服密度与分布差异。其核心创新在于利用体素中心到关键点的距离进行特征编码,增强描述符的区分度与鲁棒性。配准过程通过最近邻相似比建立对应关系,结合奇异值分解求解刚性变换。在3DCSR和真实数据集上的实验表明:SVCD配准误差低至0.004 8,召回率达82.83%和83.45%(较基线提升10.24和11.16个百分点),F1-score最高(0.803/0.832)。在高斯噪声实验中,SVCD仍保持76.54%的平均召回率,显著优于对比方法,验证了其在复杂场景下的强鲁棒性。该方法为跨源点云的高精度配准提供了有效解决方案。

    Abstract:

    To address the registration challenges caused by cross-source point cloud quality disparities, this paper proposes an improved spherical voxel local shape descriptor (Spherical Voxel Center Descriptor, SVCD) for cross-source point cloud registration. SVCD effectively mitigates density and distribution variations through dual-weighted Local Reference Frame (LRF) computation and spherical voxel segmentation. Its core innovation lies in feature encoding based on the distance from voxel centers to keypoints, enhancing the distinctiveness and robustness of the descriptor. The registration process establishes correspondences via the nearest neighbor similarity ratio and solves the rigid transformation using the singular value decomposition. Experimental results on the 3DCSR and real-world datasets demonstrate that SVCD achieves a registration error as low as 0.004 8, with recall rates of 82.83% and 83.45% (improving baseline performance by 10.24 and 11.16 percentage points, respectively), and the F1-scores are the highest (0.803 and 0.832). In Gaussian noise experiments, SVCD maintains an average recall rate of 76.54%, significantly outperforming comparative methods, validating its strong robustness in complex scenarios. This method provides an effective solution for high-precision cross-source point cloud registration.

    参考文献
    相似文献
    引证文献
引用本文

李健,李焕涛,吴浩,崔昊.改进球形体素局部形状描述符的跨源点云配准[J].红外与毫米波学报,2025,44(6):840~855]. LI Jian, LI Huan-Tao, WU Hao, CUI Hao. Cross-source point cloud registration using an improved spherical voxel-based local shape descriptor[J]. J. Infrared Millim. Waves,2025,44(6):840~855.]

复制
分享
相关视频

文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2024-12-04
  • 最后修改日期:2025-11-17
  • 录用日期:2025-02-26
  • 在线发布日期: 2025-11-07
  • 出版日期:
文章二维码