MoS2和MoTe2同质结和异质结中的表面电势排列
作者:
作者单位:

1.上海理工大学 理学院,上海200093;2.中国科学院上海技术物理研究所 红外物理国家重点实验室,上海200083;3.中国科学院大学,北京100049;4.上海师范大学 数理学院,上海200234

中图分类号:

O472+.1


Surface potential alignment in MoS2 and MoTe2 homo- and hetero-junctions
Author:
Affiliation:

1.College of Science, University of Shanghai for Science and Technology, Shanghai 200093, China;2.State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;3.University of Chinese Academy of Sciences, Beijing 100049, China;4.Mathematics and Science College, Shanghai Normal University, Shanghai 200234, China

Fund Project:

Supported by the National Natural Science Foundation of China (11991063, 62004207, 61725505, 62104118); the Shanghai Science and Technology Committee (2019SHZDZX01, 19XD1404100, 20YF1455900, 20ZR1474000); the Strategic Priority Research Program of Chinese Academy of Sciences (XDB43010200); the Youth Innovation Promotion Association CAS (2018276)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [32]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    过渡金属硫族化合物(TMD)薄层仅改变几何形状(如层厚)就可调节带隙、电子亲和势和费米能级,使器件设计更灵活。但因缺乏费米能级排列信息,TMD同质/异质结器件常因未知的能带弯曲而偏离预期。利用扫描开尔文探针显微镜(SKPM)表征了TMD同质/异质结,结果显示,MoS2和MoTe2同质结的费米能级随层厚增加向本征费米能级移动(背景掺杂浓度降低),而MoTe2/MoS2异质结中探测到宽耗尽区和强光响应,同时给出表面污染(分子尺度)对单层TMD表面电势的影响。上述发现将在器件设计中帮助精准堆叠范德华(vdW)层。

    Abstract:

    In transition metal dichalcogenides (TMD) flakes, the geometry, such as layer thickness, significantly tune the electronic properties, including bandgap, electron affinity and Fermi level. Such characteristic offers a high degree of freedom to tune the functionality of semiconductor device, once the volatile electronic properties are precisely determined. However, to date, there are still significant uncertainties in determining the Fermi-level alignment of TMD homo- or hetero- junctions, which might lead to significant deviations of band-bending and thus device performance. Here, we utilize the Scanning Kelvin Probe Microscopy (SKPM) to characterize the surface-potential/Fermi-level alignment of TMD homo- or hetero- junctions. Through this effort, a distinct phenomenon is verified where the Fermi-levels of MoS2 and MoTe2 shift towards the intrinsic level with an increasing layer thickness (in other words, the background doping concentration is continuously lowering). Moreover, we show the significant impact of surface contamination (molecular scale) on the surface potential of monolayer TMD. Finally, we fabricate a MoTe2/MoS2 heterojunction, in which we observe the wide depletion region and large photoresponse. Together, those findings might offer a reference to precisely stack van der Waals (vdW) layers as designed for both electronic and optoelectronic applications.

    参考文献
    [1] Tan C L, Lai Z C, Zhang H. Ultrathin Two-Dimensional Multinary Layered Metal Chalcogenide Nanomaterials [J]. Advanced Materials, 2017, 29(37): 1701392. 10.1002/adma.201701392
    [2] Xie C, Mak C, Tao X M, et al. Photodetectors Based on Two-Dimensional Layered Materials Beyond Graphene [J]. Advanced Functional Materials, 2017, 27(19): 1603886. 10.1002/adfm.201603886
    [3] Bhimanapati G R, Lin Z, Meunier V, et al. Recent Advances in Two-Dimensional Materials beyond Graphene [J]. Acs Nano, 2015, 9(12): 11509-11539. 10.1021/acsnano.5b05556
    [4] Bao X Z, Ou Q D, Xu Z Q, et al. Band Structure Engineering in 2D Materials for Optoelectronic Applications [J]. Advanced Materials Technologies, 2018, 3(11): 1800072. 10.1002/admt.201800072
    [5] Mak K F, Lee C, Hone J, et al. Atomically Thin MoS2: A New Direct-Gap Semiconductor [J]. Physical Review Letters, 2010, 105(13): 136805. 10.1103/physrevlett.105.136805
    [6] Li Y, Xu C Y, Zhen L. Surface potential and interlayer screening effects of few-layer MoS2 nanoflakes [J]. Applied Physics Letters, 2013, 102(14): 143110. 10.1063/1.4801844
    [7] Ruppert C, Aslan O B, Heinz T F. Optical Properties and Band Gap of Single- and Few-Layer MoTe2 Crystals [J]. Nano Letters, 2014, 14(11): 6231-6236. 10.1021/nl502557g
    [8] Kim H G, Choi H J. Thickness dependence of work function, ionization energy, and electron affinity of Mo and W dichalcogenides from DFT and GW calculations [J]. Physical Review B, 2021, 103(8): 085404. 10.1103/physrevb.103.085404
    [9] Lee H, Deshmukh S, Wen J, et al. Layer-Dependent Interfacial Transport and Optoelectrical Properties of MoS2 on Ultraflat Metals [J]. Acs Applied Materials & Interfaces, 2019, 11(34): 31543-31550. 10.1021/acsami.9b09868
    [10] Geim A K, Grigorieva I V. Van der Waals heterostructures [J]. Nature, 2013, 499(7459): 419-425. 10.1038/nature12385
    [11] Novoselov K S, Mishchenko A, Carvalho A, et al. 2D materials and van der Waals heterostructures [J]. Science, 2016, 353(6298): aac9439. 10.1126/science.aac9439
    [12] Das S, Chen H Y, Penumatcha A V, et al. High Performance Multilayer MoS2 Transistors with Scandium Contacts [J]. Nano Letters, 2013, 13(1): 100-105. 10.1021/nl303583v
    [13] Li M Y, Chen C H, Shi Y M, et al. Heterostructures based on two-dimensional layered materials and their potential applications [J]. Materials Today, 2016, 19(6): 322-335. 10.1016/j.mattod.2015.11.003
    [14] Zheng W H, Zheng B Y, Yan C L, et al. Direct Vapor Growth of 2D Vertical Heterostructures with Tunable Band Alignments and Interfacial Charge Transfer Behaviors [J]. Advanced Science, 2019, 6(7): 1802204. 10.1002/advs.201802204
    [15] Xia H, Luo M, Wang W J, et al. Pristine PN junction toward atomic layer devices [J]. Light-Science & Applications, 2022, 11(1): 170. 10.1038/s41377-022-00814-8
    [16] Cheiwchanchamnangij T, Lambrecht W R L. Quasiparticle band structure calculation of monolayer, bilayer, and bulk MoS2 [J]. Physical Review B, 2012, 85(20): 205302. 10.1103/physrevb.85.205302
    [17] Boker T, Severin R, Muller A, et al. Band structure of MoS2, MoSe2, and alpha-MoTe2: Angle-resolved photoelectron spectroscopy and ab initio calculations [J]. Physical Review B, 2001, 64(23): 235305.
    [18] Kang J, Tongay S, Zhou J, et al. Band offsets and heterostructures of two-dimensional semiconductors [J]. Applied Physics Letters, 2013, 102(1): 012111. 10.1063/1.4774090
    [19] Hu W D, Ye Z H, Liao L, et al. 128 x 128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk [J]. Optics Letters, 2014, 39(17): 5130-5133. 10.1364/ol.39.005184
    [20] Gong C, Zhang H J, Wang W H, et al. Band alignment of two-dimensional transition metal dichalcogenides: Application in tunnel field effect transistors [J]. Applied Physics Letters, 2013, 103(5): 053513. 10.1063/1.4817409
    [21] Hu W D, Chen X S, Ye Z H, et al. A hybrid surface passivation on HgCdTe long wave infrared detector with in-situ CdTe deposition and high-density Hydrogen plasma modification [J]. Applied Physics Letters, 2011, 99(9): 091101. 10.1063/1.3633103
    [22] Mcdonnell S, Azcatl A, Addou R, et al. Hole Contacts on Transition Metal Dichalcogenides: Interface Chemistry and Band Alignments [J]. Acs Nano, 2014, 8(6): 6265-6272. 10.1021/nn501728w
    [23] Li F, Qi J J, Xu M X, et al. Layer Dependence and Light Tuning Surface Potential of 2D MoS2 on Various Substrates [J]. Small, 2017, 13(14): 1603103. 10.1002/smll.201603103
    [24] Feng Y L, Zhang K L, Li H, et al. In situ visualization and detection of surface potential variation of mono and multilayer MoS2 under different humidities using Kelvin probe force microscopy [J]. Nanotechnology, 2017, 28(29): 295705. 10.1088/1361-6528/aa7183
    [25] Robinson B J, Giusca C E, Gonzalez Y T, et al. Structural, optical and electrostatic properties of single and few-layers MoS2: effect of substrate [J]. 2d Materials, 2015, 2(1): 015005. 10.1088/2053-1583/2/1/015005
    [26] Wang Z G, Li Q, Chen Y F, et al. The ambipolar transport behavior of WSe2 transistors and its analogue circuits [J]. Npg Asia Materials, 2018, 10(8): 703-712. 10.1038/s41427-018-0062-1
    [27] Zhang K N, Zhang T N, Cheng G H, et al. Interlayer Transition and Infrared Photodetection in Atomically Thin Type-II MoTe2/MoS2 van der Waals Heterostructures [J]. Acs Nano, 2016, 10(3): 3852-3858. 10.1021/acsnano.6b00980
    [28] Pezeshki A, Hossein S, Shokouh H, et al. Electric and Photovoltaic Behavior of a Few-Layer alpha-MoTe2/MoS2 Dichalcogenide Heterojunction [J]. Advanced Materials, 2016, 28(16): 3216-3222.
    [29] Lin Y F, Xu Y, Wang S T, et al. Ambipolar MoTe2 Transistors and Their Applications in Logic Circuits [J]. Advanced Materials, 2014, 26(20): 3263-3269. 10.1002/adma.201305845
    [30] Fathipour S, Ma N, Hwang W S, et al. Exfoliated multilayer MoTe2 field-effect transistors [J]. Applied Physics Letters, 2014, 105(19): 192101. 10.1063/1.4901527
    [31] Radisavljevic B, Radenovic A, Brivio J, et al. Single-layer MoS2 transistors [J]. Nature Nanotechnology, 2011, 6(3): 147-150. 10.1038/nnano.2010.279
    [32] Liu H Q, Ba K, Gou S F, et al. Reversing the Polarity of MoS2 with PTFE [J]. Acs Applied Materials & Interfaces, 2021, 13(38): 46117-46124. 10.1021/acsami.1c11328
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

江聪,张帅君,李玉莹,王文静,夏辉,李天信. MoS2和MoTe2同质结和异质结中的表面电势排列[J].红外与毫米波学报,2023,42(6):742~746]. JIANG Cong, ZHANG Shuai-Jun, LI Yu-Ying, WANG Wen-Jing, XIA Hui, LI Tian-Xin. Surface potential alignment in MoS2 and MoTe2 homo- and hetero-junctions[J]. J. Infrared Millim. Waves,2023,42(6):742~746.]

复制
分享
文章指标
  • 点击次数:426
  • 下载次数: 1417
  • HTML阅读次数: 131
  • 引用次数: 0
历史
  • 收稿日期:2023-02-27
  • 最后修改日期:2023-10-26
  • 录用日期:2023-04-17
  • 在线发布日期: 2023-10-24
文章二维码