土壤中红外光谱库支持下的局部建模集优化
作者:
作者单位:

1.华中师范大学 地理过程分析与模拟湖北省重点实验室,湖北 武汉 430079;2.浙江大学 杭州国际科创中心,浙江 杭州 311200;3.浙江大学 农业遥感与信息技术应用研究所,浙江 杭州 310058;4.农业农村部光谱检测重点实验室,浙江 杭州 310058

作者简介:

通讯作者:

中图分类号:

TP79;S151.9

基金项目:

国家自然科学基金(41601370)、农业农村部光谱检测重点实验室开放基金课题(2022ZJUGP003)和中央高校基本科研业务费专项资金(CCNU22JC022)


Novel local calibration optimization from soil mid-infrared spectral library
Author:
Affiliation:

1.Key Laboratory for Geographical Process Analysis & Simulation of Hubei Province, Central China Normal University, Wuhan 430079, China;2.ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, China;3.Institute of Remote Sensing and Information Technology, Zhejiang University, Hangzhou 310058, China;4.Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, Hangzhou 310058, China

Fund Project:

Supported by the Young Scientists Fund of the National Natural Science Foundation of China (41601370); the Key Laboratory of Spectroscopy Sensing, Ministry of Agriculture and Rural Affairs, P.R. China (2022ZJUGP003); the Fundamental Research Funds for the Central Universities (CCNU22JC022)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    土壤中红外(MIR)光谱能快速、无污染、低成本地估算土壤有机碳等理化属性。随着各种尺度土壤光谱库的建立,使用其进行快速土壤分析引起广泛关注,但光谱库的通用模型在局部尺度上的预测效果不理想。开发“局部化”光谱建模方法是提高土壤光谱库性能的有效途径。本文提出了一种新的方法,通过光谱相似度计算和建模子集构建,旨在从库中快速建立最优局部建模集以提高预测精度。比较了欧氏、马氏、余弦三种距离算法衡量待测样本与库样本之间的相似度并生成距离矩阵;使用连续统去除法从距离矩阵中提取库容曲线中的特征点。利用偏最小二乘回归建立土壤MIR光谱与有机碳含量间的定量关系。结果表明,三种距离算法结合连续统去除得到的第一特征点均可得到较佳的预测精度。马氏距离不仅模型精度最高(R2 = 0.764,RMSE = 1.021%)而且用到的库样本数最少(14%库容)。本方法可改善MIR光谱分析的成本效率并能提高局部尺度的预测能力。

    Abstract:

    Soil mid-infrared (MIR) can provide a rapid, non-polluting, and cost-efficient method for estimating soil properties, such as soil organic carbon (SOC). Although there is a wide interest in using the soil spectral library (SSL) for soil analysis at various scales, the SSL with a general calibration often produces poor predictions at local scales. Therefore, developing methods to ‘localize’ the spectroscopic modelling is a reliable way to improve the use of SSL. In this study, we proposed a new approach that aims to rapidly build the optimal local model from the SSL by calculating the spectral similarity and developing the local calibration, in order to further improve the prediction accuracy. The distance matrix was constructed by three distance algorithms, namely Euclidean distance, Mahalanobis distance, and Cosine distance, which were compared and used to measure the similarity between the local samples and the SSL. The capacity curve, which was taken from the distance matrix, was used with a method called “continuum-removal” to find the feature points. Partial least-squares regression was used to build the spectroscopic models for SOC estimation. We found that for all three distance algorithms combined with the continuum-removal, the local calibration derived from the first feature point gave us a good idea of how accurate the prediction would be. The Mahalanobis distance can effectively develop the optimal local calibration from the MIR SSL, which not only achieved the best accuracy (R2 = 0.764, RMSE = 1.021%) but also used the least number of samples from SSL (14% SSL). On local scales, the approach we proposed can significantly improve both the analytical cost and the accuracy of the soil MIR technique.

    参考文献
    相似文献
    引证文献
引用本文

沈佳丽,陈颂超,洪永胜,李硕.土壤中红外光谱库支持下的局部建模集优化[J].红外与毫米波学报,2023,42(6):815~823]. SHEN Jia-Li, CHEN Song-Chao, HONG Yong-Sheng, LI Shuo. Novel local calibration optimization from soil mid-infrared spectral library[J]. J. Infrared Millim. Waves,2023,42(6):815~823.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2022-08-25
  • 最后修改日期:2023-11-03
  • 录用日期:2023-04-11
  • 在线发布日期: 2023-11-02
  • 出版日期:
文章二维码