一种基于超材料的轻质宽带雷达/红外兼容隐身结构
作者:
作者单位:

1.中国矿业大学(北京) 机电与信息工程学院,北京 100083;2.中国空间技术研究院 钱学森空间技术实验室,北京 100094;3.哈尔滨工业大学 可调谐激光技术国家重点实验室,黑龙江 哈尔滨 150080

中图分类号:

TB34

基金项目:

中国航天科技集团公司项目(1020J20200048)


An ultralight broadband radar and thermal infrared compatible stealth structure based on metamaterials
Author:
Affiliation:

1.School of Mechanical Electronic and Information Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China;2.Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China;3.National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150080, China

Fund Project:

Supported by Project of China Aerospace Science and Technology Corporation

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    设计并研制出一种基于超材料的宽带微波/红外兼容隐身结构器件,该结构包括基于氧化铟锡(ITO)薄膜制备出的红外隐身层、微波吸收层和微波反射层,红外隐身层由圆环镂空结构的频率选择表面组成,微波吸收层由周期和方阻均不同的方环结构组成,微波反射层由连续的导电薄膜组成。各层由厚度不同的聚甲基丙烯酰亚胺(PMI)隔开。结果表明此结构能够在2~18.6 GHz范围内实现90%以上的吸收,其红外发射率低于0.3。

    Abstract:

    A radar/infrared compatible stealth structure based on metamaterial was successfully designed in this paper, and the structure consists of an infrared stealth layer (IRSL), two microwave absorption layers (MAL) and a microwave reflection layer (MRL) based on indium tin oxide (ITO) film. The IRSL is composed of frequency selective surface of ring hollow structure. The MALs are composed of square ring structures with different period and square resistance. The MRL is composed of continuous conductive film. Each layer is separated by a polymethacrylimide (PMI) materials with different thickness. Experimental results show that the structure can achieve more than 90% microwave absorption in the range of 2~18.6 GHz, and its infrared emissivity is lower than 0.3.

    参考文献
    [1] Qi D, Wang X, Cheng Y Z, et al. Design and characterization of one-dimensional photonic crystals based on ZnS/Ge for infrared-visible compatible stealth applications [J]. Optical Materials, 2016, 62:52-56. 10.1016/j.optmat.2016.09.024
    [2] FENG Li-Li, LIU Yi-Man, YAO Lin,et al. Infrared stealth and multi-band compatible stealth materials [J]. Progress in chemistry, (冯利利, 刘一曼, 姚琳, 等。 基于红外隐身及多波段兼容隐身材料。 化学进展) 2021, 33(6):1044-1058.
    [3] Pang Y Q, Li Y F, Yan M B,et al. Hybrid metasurfaces for microwave reflection and infrared emission reduction [J]. Optics Express, 2018, 26(9):11950-11958. 10.1364/oe.26.011950
    [4] Mao Z P, Wang W, Liu Y, et al. Infrared stealth property based on semiconductor (M)-to-metallic(R) phase transition characteristics of W-doped VO2 thin films coated on cotton fabrics [J]. Thin Solid Films, 2014, 558:208-214. 10.1016/j.tsf.2014.02.055
    [5] Zhong S M, Wu L J, Liu T J, et al. Transparent transmission-selective radar-infrared bi-stealth structure [J]. Optics Express, 2018, 26(13):16466-16476. 10.1364/oe.26.016466
    [6] Zhang J K, Liu R H, Zhao D P, et al. Design, fabrication and characterization of a thin infrared-visible bi-stealth film based on one-dimensional photonic crystal [J]. Optical Materials Express, 2019, 9(1):195-202. 10.1364/ome.9.000195
    [7] Phan L, Walkup W G, Ordinario D D, et al. Reconfigurable infrared camouflage coatings from a cephalopod protein [J]. Advanced Materials, 2013, 25(39):5621-5625. 10.1002/adma.201301472
    [8] Fu Q, Wang W W, Li D L, et al. Research on surface modification and infrared emissivity of In2O3: W thin films [J]. Thin Solid Films, 2014, 570:68-74. 10.1016/j.tsf.2014.09.009
    [9] Jang T, Youn H, Shin Y J, et al. Transparent and flexible polarization-independent microwave broadband absorber [J]. ACS Photonics, 2014, 1(3):279–284. 10.1021/ph400172u
    [10] Ma Y, Wang J B, Shi L H, et al. Ultra-wideband, optically transparent, and flexible microwave metasurface absorber [J]. Optical materials express, 2021, 11(7):2206-2218. 10.1364/ome.426685
    [11] HOU Jian-Zhang, GU De-En, WANG Tao, et al. A wide-angle and polarization insensitive highly-tunable infrared metamaterial perfect absorber [J]. Journal of Infrared and Millimeter Waves,(侯剑章, 顾德恩, 王涛, 等。 一种宽角度极化不敏感的高可调谐红外超材料完美吸波体。 红外与毫米波学报) 2015, 34(4):406-410. 10.11972/j.issn.1001-9014.2015.04.005
    [12] TONG Yan-Qun, WANG Shi-Yan, SONG Xiao-Xian, et al. Multi-band tunable terahertz absorber based on metamaterial [J]. Journal of Infrared and Millimeter Waves,(佟艳群,汪诗妍,宋效先, 等。 基于超材料的多频带可调谐太赫兹吸收器。 红外与毫米波学报) 2020, 39(6):735-741. 10.11972/j.issn.1001-9014.2020.06.011
    [13] Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber [J]. Physical Review Letters, 2008, 100(20):207402. 10.1103/physrevlett.100.207402
    [14] Ding F, Cui Y X, Ge X C, et al. Ultra-broadband microwave metamaterial absorber [J]. Applied Physical Letter, 2012, 100(10):103506. 10.1063/1.3692178
    [15] Zheng Y L, Chen K, Jiang T, et al. Multi-octave microwave absorption via conformal metamaterial absorber with optical transparency [J]. Journal of physics D-Applied physics, 2019, 52(33):335101. 10.1088/1361-6463/ab2365
    [16] Li L, Lv Z Y. Ultra-wideband polarization-insensitive and wide-angle thin absorber based on resistive metasurfaces with three resonant modes [J]. Journal of Applied Physics, 2017, 122(5):055104. 10.1063/1.4997468
    [17] Zhang C, Cheng Q, Yang J, et al. Broadband metamaterial for optical transparency and microwave absorption [J]. Applied Physical Letter, 2017, 110(14):143511. 10.1063/1.4979543
    [18] Chen K, Cui L, Feng Y J, et al. Coding metasurface for broadband microwave scattering reduction with optical transparency [J]. Optics Express, 2017, 25(5):5571-5579. 10.1364/oe.25.005571
    [19] Sheokand H, Ghosh S, Singh G, et al. Transparent broadband metamaterial absorber based on resistive films [J]. Journal of Applied Physics, 2017, 122(10):105105. 10.1063/1.5001511
    [20] Wu Y H, Wang J J, Lai S F, et al. A transparent and flexible microwave absorber covering the whole WiFi waveband [J]. AIP Advances, 2019, 9(2):025309. 10.1063/1.5083102
    [21] Zhou Q, Yin X W, Ye F, et al. Optically transparent and flexible broadband microwave metamaterial absorber with sandwich structure [J]. Applied Physics A, 2019, 125(2):131. 10.1007/s00339-019-2430-2
    [22] Zhang C L, Wu X Y, Huang C, et al. Flexible and transparent microwave-infrared bistealth structure [J]. Advanced Materials Technologies. 2019, 4(8):1900063. 10.1002/admt.201900063
    [23] LI Jun-Zhe, TIAN Hao, LIU Hai-Tao, et al. Design and verification of a radar-infrared stealth-compatible material based on metamaterial [J]. Journal of Functional Materials(李君哲, 田浩, 刘海韬, 等。一种基于超材料的雷达红外兼容隐身材料设计与验证。功能材料) 2017, 48(05):5137-5143.
    [24] Yang C, Chen S, Niu S, et al. Transparent broadband microwave metamaterial absorber with thermal insulating and soundproof [J]. Optoelectronics Letters, 2021, 17(2):85-89. 10.1007/s11801-021-0023-8
    [25] Du Z Q, Liang J G, Cai T, et al. Ultra-light planar meta-absorber with wideband and full-polarization properties [J]. Optics Express, 2021, 29(5):6434-6444. 10.1364/oe.416245
    [26] Wen K H, Han T C, Lu H P, et al. Experimental demonstration of an ultra-thin radar-infrared bi-stealth rasorber [J]. Optics Express, 2021, 29(6):8872-8879. 10.1364/oe.418575
    [27] Yang C, Niu S, CHANG Hui-Cong, et al. Thermal infrared and broadband microwave stealth glass windows based on multi-band optimization [J]. Optics Express, 2021, 29(9):13610-13623. 10.1364/oe.424226
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

牛帅,杨昌,常慧聪,肖林,郭楠,曲彦臣,李国华.一种基于超材料的轻质宽带雷达/红外兼容隐身结构[J].红外与毫米波学报,2022,41(4):745~750]. NIU Shuai, YANG Chang, CHANG Hui-Cong, XIAO Lin, GUO Nan, QU Yan-Chen, LI Guo-Hua. An ultralight broadband radar and thermal infrared compatible stealth structure based on metamaterials[J]. J. Infrared Millim. Waves,2022,41(4):745~750.]

复制
分享
文章指标
  • 点击次数:686
  • 下载次数: 3002
  • HTML阅读次数: 448
  • 引用次数: 0
历史
  • 收稿日期:2022-01-10
  • 最后修改日期:2022-08-14
  • 录用日期:2022-03-15
  • 在线发布日期: 2022-08-10
文章二维码