InAs/GaSb超晶格/GaSb体材料中短波双色红外探测器
作者:
作者单位:

1.云南师范大学 云南省光电信息技术重点实验室,云南 昆明 650500;2.中国科学院半导体研究所 超晶格与微结构国家重点实验室,北京100083;3.中国科学院大学 材料科学与光电子工程中心,北京100049

中图分类号:

TN140.3050

基金项目:

国家自然科学基金资助项目(61774130 11474248, 61176127, 61006085, 61274013,61306013)


Mid-/Short-Wave dual-band infrared detector based on InAs/GaSb superlattice /GaSb bulk materials
Author:
Affiliation:

1.Yunnan Key Laboratory of Opto-Electronic Information Technology, Yunnan Normal University, Kunming 650500, China;2.State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors,Chinese Academy of Sciences, Beijing 100083, China;3.Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China

Fund Project:

Supported by National Natural Science Foundation of China (61774130 11474248, 61176127, 61006085, 61274013,61306013)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    采用GaSb体材料和InAs/GaSb超晶格分别作为短波与中波吸收材料,外延生长制备了NIPPIN型短中双色红外探测器。HRXRD及AFM测试表明,InAs/GaSb超晶格零级峰和GaSb峰半峰宽FWHM分别为17.57 arcsec和19.15 arcsec,范围表面均方根粗糙度为1.82。77 K下,SiO2钝化器件最大阻抗与面积乘积值RA,暗电流密度为,侧壁电阻率为。经阳极硫化后,器件最大值为,暗电流密度为,侧壁电阻率为。相同偏压下,硫化工艺使器件暗电流降低1-2个数量级,侧壁电阻率提高了1个数量级。对硫化器件进行了光谱响应测试,器件具有依赖偏压极性的低串扰双色探测性能,其短波通道与中波通道的50%截止波长分别为1.55 和4.62 ,在1.44 、2.7 和4 处,响应度分别为0.415 A/W、0.435 A/W和0.337 A/W。

    Abstract:

    Using GaSb bulk and InAs/GaSb superlattice as short wave and medium wave infrared absorbing materials respectively, a short/mid dual-band infrared detectors with NIPPIN structure were epitaxial growth and fabricated. HRXRD and AFM tests show the FWHM of zero order peak of InAs/GaSb superlattice and GaSb peak are 17.57 arcsec and 19.15 arcsec, respectively. Surface root mean square roughness RMS is 1.82 under . At 77 K, the maximum product RA of resistance and area of SiO2 passivated device is , the dark current density is , and side wall resistivity is . After anodic sulfuration, the maximum RA of the device is , the dark current density is , and side wall resistivity is . Sulfurization reduces dark current of the device by more than one order of magnitude and increases side wall resistivity by one order of magnitude under the same bias. The spectral response of the sulfurization device was tested, the device has the bais polarity-dependent dual-band detection performance with low crosstalk. The 50% cutoff wavelengths of the short-wave and medium-wave channels are 1.55 and 4.62, respectively. At 1.44 μm, 2.7 μm and 4 μm,the responsivity are 0.415 A/W, 0.435 A/W and 0.337 A/W, respectively.

    参考文献
    [1] BAI Y, ZHAO L, Ju D, et al. Wide-angle, polarization-independent and dual-band infrared perfect absorber based on L-shaped metamaterial [J]. Optics Express, 2015, 23(7). 10.1364/oe.23.008670
    [2] KOPYTKO M, GAWRON W, K?B?OWSKI A, et al. Numerical analysis of HgCdTe dual-band infrared detector [J]. Optical and Quantum Electronics, 2019, 51(3). 10.1007/s11082-019-1755-6
    [3] TANG X, ACKERMAN M M, CHEN M, et al. Dual-band infrared imaging using stacked colloidal quantum dot photodiodes [J]. Nature Photonics, 2019, 13(4): 277-282. 10.1038/s41566-019-0362-1
    [4] MO D, CHEN S, CHEN L, et al. Similarity criteria of target thermal radiation characteristics and their application to infrared radiation of jet engine exhaust system [J]. International Journal of Thermal Sciences, 2018, 125. 10.1016/j.ijthermalsci.2017.12.003
    [5] WILLIAMS D. Infrared Radiation [J]. The Physics Teacher, 1963, 212(1).
    [6] MAINZER N, LAKIN E, ZOLOTOYABKO E. Point-defect influence on 1/f noise in HgCdTe photodiodes [J]. Applied Physics Letters, 2002, 81(4): 763-765. 10.1063/1.1494118
    [7] NOKHWAL R, SAXENA R S, A B L S, et al. Study of dislocations in HgCdTe epilayers at (1 1 1)B and (1 1 0) surfaces using modified defect etchant [J]. Infrared Physics & Technology, 2015(71): 378–383. 10.1016/j.infrared.2015.05.016
    [8] KALUGIN N G, JING L, BAO W, et al. Graphene-based quantum Hall effect infrared photodetector operating at liquid Nitrogen temperatures [J]. Applied Physics Letters, 2011, 99. 10.1063/1.3609320
    [9] ROGALSKI A. New material systems for third generation infrared photodetectors [J]. Opto-Electronics Review, 2008, 16(4): 458-482. 10.2478/s11772-008-0047-7
    [10] TANG C-C, IKUSHIMA K, LING D C, et al. Quantum Hall Dual-Band Infrared Photodetector [J]. Physical Review Applied, 2017, 8(6). 10.1103/physrevapplied.8.064001
    [11] HADDADI A, CHEVALLIER R, DEHZANGI A, et al. Extended short-wavelength infrared nBn photodetectors based on type-II InAs/AlSb/GaSb superlattices with an AlAsSb/GaSb superlattice barrier [J]. Applied Physics Letters, 2017, 110(10). 10.1063/1.4978378
    [12] HOANG A M, DEHZANGI A, ADHIKARY S, et al. High performance bias-selectable three-color Short-wave/Mid-wave/Long-wave Infrared Photodetectors based on Type-II InAs/GaSb/AlSb superlattices [J]. Sci Rep, 2016, 6: 24144. 10.1038/srep24144
    [13] LV Yanqiu, PENG Zhenyu, CAO Xiancun, et al. 320×256 mid-/short-wavelength dual-color infrared detector based on InAs/GaSb superlattice [J].Infrared and Laser Engineering, 2020, 1: 72-76.
    [14] ZHU Xubo, PENG Zhenyu, CAO Xiancun, et al. Mid-/short-wavelength dual-color infrared focal plane arrays based on type-II InAs/GaSb superlattice [J].Infrared and Laser Engineering, 2019, 48(11): 102-107. 10.3788/irla201948.1104001
    [15] CHAUHAN D, PERERA A G U, LI L H, et al. Effect of a current blocking barrier on a 2–6 μm p-GaAs/AlGaAs heterojunction infrared detector [J]. Applied Physics Letters, 2016, 108(20). 10.1063/1.4952431
    [16] CRAIG A P, JAIN M, WICKS G, et al. Short-wave infrared barriode detectors using InGaAsSb absorption material lattice matched to GaSb [J]. Applied Physics Letters, 2015, 106(20). 10.1063/1.4921468
    [17] HOWARD W. YOON M C D, GEORGE P. Eppeldauer. Performance Comparisons of InGaAs, extended InGaAs,and Short-wave HgCdTe Detectors between 1 μm and 2.5 μm [J]. The International Society For Optical Engineering, 2006, 6297.
    [18] ABROUG S, SAADALLAH F, YACOUBI N. Photothermal investigations of doping effects on opto-thermal properties of bulk GaSb [J]. Journal of Alloys and Compounds, 2009, 484. 10.1016/j.jallcom.2009.05.040
    [19] PINO R, KO Y, DUTTA P S. Enhancement of infrared transmission in GaSb bulk crystals by carrier compensation [J]. Journal of Applied Physics, 2004, 96(2): 1064-1067. 10.1063/1.1738527
    [20] Papis-Polakowska E, Kaniewski J., Szade J., et al. Passivation studies of GaSb-based superlattice structures [J]. Thin Solid Films, 2014, 567. 10.1016/j.tsf.2014.07.044
    [21] PLIS E, KHOSHAKHLAGH A, MYERS S, et al. Performance improvement of InAs/GaSb strained layer superlattice detectors by reducing surface leakage currents with SU-8 passivation [J]. Applied Physics Letters, 2010, 96(3). 10.1063/1.3275711
    [22] GIN A, WEI Y, BAE J, et al. Passivation of type II InAs/GaSb superlattice photodiodes [J]. Thin Solid Films, 2004, 447-448: 489-492. 10.1016/j.tsf.2003.09.002
    [23] LIU G J, FRUHBERGER B, SCHULLER I K, et al. Quantitative structural characterization of InAs∕GaSb superlattices [J]. Journal of Applied Physics, 2006, 100(6). 10.1063/1.2353732
    [24] ZHANG X B, RYOU J H, DUPUIS R D, et al. Improved surface and structural properties of InAs∕GaSb superlattices on (001) GaSb substrate by introducing an InAsSb layer at interfaces [J]. Applied Physics Letters, 2007, 90(13). 10.1063/1.2717524
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

马晓乐,郭杰,郝瑞亭,魏国帅,王国伟,徐应强,牛智川. InAs/GaSb超晶格/GaSb体材料中短波双色红外探测器[J].红外与毫米波学报,2021,40(5):569~575]. MA Xiao-Le, GUO Jie, HAO Rui-Ting, WEI Guo-Shuai, WANG Guo-Wei, XU Ying-Qiang, NIU Zhi-Chuan. Mid-/Short-Wave dual-band infrared detector based on InAs/GaSb superlattice /GaSb bulk materials[J]. J. Infrared Millim. Waves,2021,40(5):569~575.]

复制
分享
文章指标
  • 点击次数:1001
  • 下载次数: 3664
  • HTML阅读次数: 501
  • 引用次数: 0
历史
  • 收稿日期:2020-08-22
  • 最后修改日期:2021-09-04
  • 录用日期:2021-02-16
  • 在线发布日期: 2021-09-02
文章二维码