毫米波移动通信中基于AUKF的波束跟踪算法
作者:
作者单位:

上海大学 特种光纤与光接入网省部共建教育部重点实验室,上海200072

作者简介:

通讯作者:

中图分类号:

TN928

基金项目:


AUKF-based beam tracking algorithm in Millimeter-Wave mobile communication
Author:
Affiliation:

Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai 200072,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对移动毫米波通信场景中收发波束存在角度偏差时接收信号质量急剧下降的问题,提出一种基于自适应无迹卡尔曼滤波(AUKF)原理的波束跟踪算法。针对低复杂度对于移动场景的适用性,该算法设计了一种有效的波束跟踪方案,在模拟波束形成架构中通过训练一个波束对以跟踪一条电磁波路径来保持有效的毫米波通信。通过引入自适应调节因子,在系统存在异常扰动时候,可以自适应调节预测和观测协方差矩阵,提高估计精度和收敛速度。仿真结果表明,所提的自适应无迹卡尔曼滤波算法明显降低了移动环境中的波束跟踪误差,具有稳健的波束跟踪能力。

    Abstract:

    Aiming at the problem that the received signal quality drops sharply when transmit and receive beams have angular deviations in a mobile millimeter wave communication scenario, this paper proposes a beam tracking algorithm based on Adaptive Unscented Kalman Filter (AUKF). Considering the applicability of low complexity for mobile scenarios, this algorithm designs an effective beam tracking scheme. In the analog beam forming architecture, a beam pair is trained to track an electromagnetic wave path to maintain an effective millimeter wave communication. By introducing an adaptive adjustment factor, the prediction and observation covariance matrices can be adjusted adaptive when there is an abnormal disturbance in the system, improving the estimation accuracy and the convergence speed. Simulation results show that the adaptive Unscented Kalman Filter algorithm in this paper significantly reduces beam tracking errors in mobile environments and has robust beam tracking capabilities.

    参考文献
    相似文献
    引证文献
引用本文

彭章友,李文.毫米波移动通信中基于AUKF的波束跟踪算法[J].红外与毫米波学报,2021,40(3):334~340]. PENG Zhang-You, LI Wen. AUKF-based beam tracking algorithm in Millimeter-Wave mobile communication[J]. J. Infrared Millim. Waves,2021,40(3):334~340.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-04-01
  • 最后修改日期:2021-05-17
  • 录用日期:2020-06-29
  • 在线发布日期: 2021-05-19
  • 出版日期: 2021-06-25
文章二维码