基于双稀疏域联合求解的高精度光谱恢复算法
作者:
作者单位:

1.中国科学院上海技术物理研究所空间主动光电技术重点实验室,上海 200083;2.中国科学院大学,北京 100049;3.国科大杭州高等研究院,浙江 杭州 310024;4.上海科技大学信息科学与技术学院,上海 200020

作者简介:

通讯作者:

中图分类号:

TP751

基金项目:

国家自然科学基金(6160523),高分辨率对地观测系统重大专项(GFZX04014308)


High-precision algorithm for restoration of spectral imaging based on joint solution of double sparse domains
Author:
Affiliation:

1.Key Laboratory of Space Active Opto-Electronics Technology, Shanghai Institute of Technical Physics, Chinese Academy of Sciences ,Shanghai 200083, China;2.University of Chinese Academy of Sciences, Beijing 100049, China;3.Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences,Hangzhou,310024 China;4.School of Information Science&Techno1ogy, ShanghaiTech University, Shanghai 201210, China

Fund Project:

Supported by the National Natural Science Foundation of China (6160523),Major Project of High Resolution Earth Observation System (GFZX04014308)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于压缩感知的光谱成像系统需要合适的算法解码采样数据才能得到最终的光谱成像数据,传统单稀疏域变换算法会带来光谱细节损失等问题。针对该问题,本文提出了利用双稀疏域联合求解的方法(JDSD),将信号分解为低频部分和高频部分,并针对不同频率信号特点分别进行稀疏恢复,进而解码求解以实现高精度恢复信号。在数据验证中,首先利用OMP算法在频域内对光谱信息轮廓进行恢复,利用IRLS算法在空间域内对光谱细节进行补偿,分析了不同稀疏变换对于参数设置的影响,测试了不同算法组合的JDSD对于测试数据的恢复结果。对于500种光谱数据仿真测试表明,双稀疏域联合求解可将光谱恢复保真度大大提升,20%采样率情况下,SAM和GSAM指标由传统方法的0.625和0.515分别提升为0.817和0.659,80%采样率情况下,SAM和GSAM指标由传统方法的0.863和0.808分别提升为0.940和0.897。JDSD算法可以使得光谱吸收峰等细节特征得到高精度保持,对于基于光谱的特征分析、物质识别等应用具有十分重要的意义。

    Abstract:

    Compressed sensing-based spectral imaging systems need to decode the sampled data by a proper algorithm to obtain the final spectral imaging data. Traditional decoding algorithms based on single sparse domain transformation will lead to loss of spectral details. Addressing this problem, a solution is proposed by using transformation of two sparse domains. A signal was decomposed into a low frequency part and a high frequency part, sparse restoration was performed according to the characteristics of different frequencies, and then decoding was performed to obtain high-precision restored signals. In data verification, the OMP algorithm was firstly used to restore the spectral information profile in the frequency domain, then the IRLS algorithm was applied to compensate the spectral details in the spatial domain. The impact of different sparse transformations on parameter settings was analyzed, and the JDSD of different algorithm combinations was tested. Test and simulation results on 500 kinds of spectral data show that the joint solution of double sparse domains can greatly improve the fidelity of spectral restoration. With a sampling rate of 20%, the SAM and GSAM indexes are increased from 0.625 and 0.515 by traditional methods to 0.817 and 0.659, respectively. In the case of 80%sampling rate, the SAM and GSAM indexes are increased from 0.863 and 0.808 of traditional methods to 0.940 and 0.897, respectively. JDSD algorithm can maintain high-precision details such as spectral absorption peaks,which is of great significance.

    参考文献
    相似文献
    引证文献
引用本文

刘世界,李春来,徐睿,唐国良,吴兵,徐艳,王建宇.基于双稀疏域联合求解的高精度光谱恢复算法[J].红外与毫米波学报,2021,40(5):685~695]. LIU Shi-Jie, LI Chun-Lai, XU Rui, TANG Guo-Liang, WU Bing, XU Yan, WANG Jian-Yu. High-precision algorithm for restoration of spectral imaging based on joint solution of double sparse domains[J]. J. Infrared Millim. Waves,2021,40(5):685~695.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2020-03-16
  • 最后修改日期:2021-05-08
  • 录用日期:2020-05-13
  • 在线发布日期: 2021-04-27
  • 出版日期:
文章二维码