基于等效相位中心近似与改进SLIM算法的稀疏阵列快速成像算法
作者:
作者单位:

博微太赫兹信息科技有限公司安徽 合肥 230000

作者简介:

通讯作者:

中图分类号:

O45

基金项目:

安徽省重点研究和开发计划项目


A fast imaging algorithm for sparse array imaging based on PCA and modified SLIM methods
Author:
Affiliation:

Brainware Terahertz Information Technology Co. Ltd, Hefei 230000, China

Fund Project:

Supported by Key research and development projects in Anhui Province(201904e01020005)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出一种应用于毫米波稀疏阵列成像的基于频率域成像算法和压缩感知技术相结合的成像算法。算法包含两个主要步骤,首先采用等效相位中心近似原理,将快速傅里叶变换成像算法用于周边形阵列,由于等效相位中心近似引入的残余相位误差无法在近距离成像应用中被完全补偿,因此在第二个步骤中,提出基于压缩感知技术的基于迭代最小化的稀疏学习(SLIM)的改进算法用于重聚焦初始图像。通过等效相位中心近似原理和改进的SLIM算法的结合,所提算法具备更高的计算效率、提升了图像质量、相比于传统的SLIM算法具备更少的迭代次数。仿真结果验证了所提算法的有效性。

    Abstract:

    An algorithm combining frequency domain imaging algorithm and compressed sensing (CS) framework is proposed in here for millimeter-wave multi-static sparse array imaging. The algorithm consists of two major steps. Firstly, the typical fast Fourier transform (FFT) algorithm used in square boundary array with phase center approximation (PCA) is carried out. However, the residual phase error introduced by the PCA at close range cannot be compensated completely, so in the second step, the modified sparse learning via iterative minimization (SLIM) algorithm which is in the CS framework is introduced to refocus the initial images. By combining PCA and the modified SLIM algorithm, the proposed algorithm reaches a better computational efficiency, improves the image quality, and alleviates the requirement for iterations of the original SLIM algorithm. Simulation results verify the effectiveness of this algorithm.

    参考文献
    相似文献
    引证文献
引用本文

孟祥新,武帅,涂昊,柳桃荣,靳学明.基于等效相位中心近似与改进SLIM算法的稀疏阵列快速成像算法[J].红外与毫米波学报,2020,39(3):300~305]. MENG Xiang-Xin, WU Shuai, TU Hao, LIU Tao-Rong, JIN Xue-Ming. A fast imaging algorithm for sparse array imaging based on PCA and modified SLIM methods[J]. J. Infrared Millim. Waves,2020,39(3):300~305.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2019-10-18
  • 最后修改日期:2020-04-16
  • 录用日期:2019-11-25
  • 在线发布日期: 2020-03-24
  • 出版日期:
文章二维码