基于两时相图像联合分类的SAR图像变化检测
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金,国家863项目,教育部长江学者和创新团队支持计划资助,陕西省自然科学基金,国家教育部重点项目?


CHANGE DETECTION FOR SAR IMAGES BASED ON JOINT-CLASSIFICATION OF BI-TEMPORAL IMAGES
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统分类后比较法(post-classification comparison,PCC)存在分类累积误差问题,且对单幅图像分类精度要求较高,对此,根据不同时相图像的不变信息所具有的相关性,提出了一种基于两时相图像联合分类的SAR图像变化检测方法.该方法以灰度值作为输入信息,通过相似度计算可得两时相图像对应位置像素的灰度相似度,然后求解全局相似度阈值,并用于控制基于K-均值的联合分类器对两时相图像进行联合分类,最后通过类别比较获得变化检测结果.实验结果表明本文方法不但可提高单幅图像的分类精度,而且能够精确地把不同时相图像的不变地物信息划分为同一类别,减少了分类累积误差的影响,提高了变化检测性能.

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

李金基,焦李成,张向荣,杨咚咚.基于两时相图像联合分类的SAR图像变化检测[J].红外与毫米波学报,2009,28(6):]. CHANGE DETECTION FOR SAR IMAGES BASED ON JOINT-CLASSIFICATION OF BI-TEMPORAL IMAGES[J]. J. Infrared Millim. Waves,2009,28(6).]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码