基于脊波和神经网络的大压缩比遥感图像压缩
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP311.56

基金项目:

国家自然科学基金


HIGH-RATIO COMPRESSION OF REMOTE SENSING IMAGE BASED ON RIDGELET AND NEURAL NETWORK
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了实现大压缩比的遥感图像压缩,利用神经网络的自组织、并行计算和分布式存储的能力,提出一种基于神经网络的压缩方法.在传统单隐层前向神经网络的基础上,该网络使用一种新的能有效处理直线型和曲线型奇异性的多尺度几何分析工具-脊波,作为隐层神经元的激活函数.它不仅具有神经网络压缩的优点;并且由于脊波良好的时、频和方向局域化特性,能够对遥感图像的边缘和轮廓实现更加有效的表示.仿真结果表明:该方法不仅能实现较高的压缩比,而且具有重建图像质量好、学习快速和鲁棒性强等优点.

    Abstract:

    To get a high-ratio compression of remote sensing images,a neural network(NN)-based compression method was advanced.By using the characteristics of self-learning,parallel processing and distributed storage of NN,a single hidden layer feed-forward NN was constructed for getting high-ratio compression of remote sensing images.Moreover,we employ ridgelet,which is a new geometrical multiscale analysis(GMA) tool and is powerful in dealing with linear singularities(and curvilinear singularities with a localized version),as the activation function in the hidden layer of the network.Therefore the network has both the advantages of NN-based image compression method and more effective representation of edges and contours for the localization properties of ridgelet in scale,location and direction.The simulation results show that the proposed network can not only get high compression ratio but also present promising results,such as high reconstruction quality,fast learning and robustness,as compared to available techniques in the literature.

    参考文献
    相似文献
    引证文献
引用本文

杨淑媛,王敏,焦李成.基于脊波和神经网络的大压缩比遥感图像压缩[J].红外与毫米波学报,2007,26(4):297~301]. YANG Shu-Yuan, WANG Min, JIAO Li-Cheng. HIGH-RATIO COMPRESSION OF REMOTE SENSING IMAGE BASED ON RIDGELET AND NEURAL NETWORK[J]. J. Infrared Millim. Waves,2007,26(4):297~301.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2006-08-11
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码