基于超光谱图像的舌体分割算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP79

基金项目:

国家高技术研究发展计划(863计划)


AUTOMATED TONGUE SEGMENTATION ALGORITHM BASED ON HYPERSPECTRAL IMAGE
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    舌体分割是实现中医舌诊现代化的一个前提工作,分割质量直接影响舌象诊断的性能.然而由于舌的生理特征比较复杂,舌的形态以及舌与嘴唇的连接各不相同,使得舌体分割比较困难.本文采用超光谱成像系统代替数码相机采集舌图像,并借鉴光谱角度匹配算法,发展了基于超光谱图像的舌体分割算法.这一算法通过光谱角度匹配算法将超光谱舌图像立方体转换成光谱角度立方体,然后采用一维脉冲波形的边沿信息检测出边缘信息,最后实现了舌体的分割.试验表明,这种基于超光谱图像的舌体分割算法可以较为准确地将舌体分割出来.

    Abstract:

    The automated segmentation of the tongue body is a premise to establish an automatic diagnosis system according to the features of tongue in traditional Chinese medicine(TCM),whose qualities have great effect on the performance of tongue diagnosis.However,automated tongue segmentation is difficult due to the complexity of pathological tongue,variance of tongue shape and interference of the lips.Here a novel algorithm for automated tongue segmentation was presented based on hyperspectral tongue image data acquired from a hyperspectral imaging system.First,by finding the spectral angle(SA) between each pixel and every other pixel in the original data cube,a transformed data cube was constructed.Thus,each spectrum in the transformed SA cube contained information about spatial changes in the tongue scene.Then,each spectrum in the transformed SA cube was analyzed with a one-dimensional edge-detector.Finally, the whole contour of the tongue was extracted from the hyperspectral tongue image according to the edge detected.Experimental results demonstrate that the novel tongue segmentation algorithm can segment the tongue more accurately.

    参考文献
    相似文献
    引证文献
引用本文

李庆利,薛永祺,王建宇,岳小强.基于超光谱图像的舌体分割算法[J].红外与毫米波学报,2007,26(1):77~80]. LI Qing-Li, XUE Yong-Qi, WANG Jian-Yu, YUE Xiao-Qiang. AUTOMATED TONGUE SEGMENTATION ALGORITHM BASED ON HYPERSPECTRAL IMAGE[J]. J. Infrared Millim. Waves,2007,26(1):77~80.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2006-03-15
  • 最后修改日期:2006-10-30
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码