基于均值漂移滤波及谱分类的海面舰船红外目标分割
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP301.6

基金项目:

国家自然科学基金 , 中国博士后科学基金


SHIP INFRARED OBJECT SEGMENTATION BASED ON MEAN SHIFT FILTERING AND GRAPH SPECTRAL CLUSTERING
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了一种有效的海面舰船红外目标分割方法.利用均值漂移方法的不连续保持性滤波特性,滤除海面的强杂波干扰,同时又不损失舰船目标的信息.根据滤波得到的区域构建区域邻接图,采用基于最大最小SST图划分算法对区域邻接图的节点进行划分.划分结果最终将图像分为天空背景、海面背景以及舰船目标3个部分.由于采用区域节点来表征图像,较之采用原始图像象素节点表示,其节点个数大大减少,从而使算法的计算效率得到很大提高.实验结果也表明提出两步算法具有优越的性能,能够在海面强杂波干扰的情况下有效提取舰船红外目标.

    Abstract:

    A novel thresholding algorithm was presented to achieve an improved ship infrared object segmentation performance.The proposed algorithm uses discontinuity preserving smoothing algorithm based on mean shift procedure to filter the powerful noise without the loss of the ship object information.The regions produced by mean shift filtering can be represented by a planar weighted region adjacency graphs that incorporates topological information of the image structure and region connectivity.Under the graph representation,region merging algorithm based on SST-minimax was applied to partition the regions into different class,such as sky background,sea background and ship object.Due to the less nodes produced by the regions of filtered image than the original image,the region merging based on SST-minimax algorithms has much less computational complexity.A large number of examples are presented to show the superior performance of the proposed ship infrared object segmentation algorithm.

    参考文献
    相似文献
    引证文献
引用本文

陶文兵,金海.基于均值漂移滤波及谱分类的海面舰船红外目标分割[J].红外与毫米波学报,2007,26(1):61~64]. TAO Wen-Bing, JIN Hai. SHIP INFRARED OBJECT SEGMENTATION BASED ON MEAN SHIFT FILTERING AND GRAPH SPECTRAL CLUSTERING[J]. J. Infrared Millim. Waves,2007,26(1):61~64.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2005-12-21
  • 最后修改日期:2006-06-18
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码