可见/近红外光谱预测杨梅汁酸度的方法研究
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

S123 TH744.1

基金项目:

国家自然科学基金(30671213)、高等学校优秀青年教师教学科研奖励计划(02411)和高等学校博士学科点专项科研基金(20040335034)资助项目


METHOD FOR PREDICTING ACIDITY OF BAYBERRY JUICE BY USING VIS/NEAR INFRARED SPECTRA
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对可见/近红外光与杨梅汁酸度存在非线性相关的特点,提出了应用偏最小二乘(PLS)法预测线性部分和人工神经网络(ANN)预测非线性部分,结合两种方法综合预测杨梅汁酸度值,通过比较r,RMSEP,Bias的值来检验该方法.其中PLS模型用于寻找与杨梅汁酸度值有关的敏感波段,预测杨梅汁酸度的线性部分,将这些敏感波段对应的光谱吸光度值作为人工神经网络的输入,并将杨梅汁酸度的实际测量值减去PLS模型校正值,获得的差额部分作为神经网络的输出,建立一个差额神经网络预测杨梅汁酸度的非线性部分.46个样本用于建模,30个样本用于预测.结果表明该方法对样本的预测相关系数r=0.939,RMSEP=0.218,Bias=-0.121,好于只使用PLS模型的相关系数r=0.921,RMSEP=0.228,Bias=-0.132.

    Abstract:

    Aiming at the nonlinear correlation characteristic of visible/near infrared spectra and the corresponding acidity of bayberry juice,one mixed algorithm was presented to predict the acidity of bayberry juice with partial least squares(PLS) and artificial neural network(ANN).The values of correlation coefficient(r),the root mean squared error of prediction(RMSEP),and bias were used to estimate the mixed model.PLS was used to find some sensitive spectra related to acidity in juice,and the values of spectral absorptance corresponding to them were regarded as the input neurons of ANN.Remnant values by subtracting standard values and validation values were regarded as the output neurons of ANN.The calibration equation developed from them was used to predict the constituent values for the independent spectra of 30 samples.The results indicate that the observed results by using PLS-ANN(r=0.939,RMSEP=0.218,Bias=-0.121) are better than those obtained by PLS(r=0.921,RMSEP=0.228,Bias=-0.132).

    参考文献
    相似文献
    引证文献
引用本文

邵咏妮 何勇.可见/近红外光谱预测杨梅汁酸度的方法研究[J].红外与毫米波学报,2006,25(6):478~480]. SHAO Yong-Ni, HE Yong. METHOD FOR PREDICTING ACIDITY OF BAYBERRY JUICE BY USING VIS/NEAR INFRARED SPECTRA[J]. J. Infrared Millim. Waves,2006,25(6):478~480.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2005-12-31
  • 最后修改日期:2006-05-08
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码