航天湍流退化图像的极大似然估计规整化复原算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP391.41 TN941.1

基金项目:

国家自然科学基金重点资助项目(60135020),国家重点预研支持资助项目(413010702)


REGULARIZED RESTORATION ALGORITHM OF ASTRONAUTCAL TURBULENCE-DEGRADED IMAGES USING MAXIMUM-LIKELIHOOD ESTIMATION
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了从有噪的湍流退化图像中有效地恢复出目标图像,提出了一种基于极大似然估计准则的规整化复原算法.根据图像随机场模型建立了有关多帧图像数据的对数似然函数,同时为了平滑噪声和保护图像边缘以及避免无价值的解,将一些合理的惩罚项和辅助平滑项融合到该对数似然函数中.推导出了湍流点扩展函数和目标图像的交替迭代求解公式,通过迭代方式可将点扩展函数和目标图像同时估计出来,给出了算法的并行处理方案.在微机上对强噪声条件下的湍流退化图像进行了恢复实验,实验结果表明本算法具有较强的抗噪能力和实用价值.

    Abstract:

    A regularized restoration algorithm based on maximum-likelihood estimation was presented for restoring object images from the noisy turbulence-degraded images. The logarithmic maximum-likelihood function for multi-frame image data based on the model of image random field was built, and some auxiliary terms to smooth noise while preserve the edges of images and the penalized item to avoid trivial solutions were added to the maximum-likelihood function. The iterative formulas of calculating the PSFs and object image were derived so that the PSFs and the object image could be estimated in the iterative manner. A parallel processing scheme for the algorithm is also proposed.The restoration experiments on the simulated turbulence-degraded images in the case of noise show that the proposed algorithm has high ability of noise-resisting and it has some practical applications.

    参考文献
    相似文献
    引证文献
引用本文

洪汉玉 张天序 余国亮.航天湍流退化图像的极大似然估计规整化复原算法[J].红外与毫米波学报,2005,24(2):130~134]. HONG Han-Yu, ZHANG Tian-Xu, YU Guo-Liang. REGULARIZED RESTORATION ALGORITHM OF ASTRONAUTCAL TURBULENCE-DEGRADED IMAGES USING MAXIMUM-LIKELIHOOD ESTIMATION[J]. J. Infrared Millim. Waves,2005,24(2):130~134.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2004-06-29
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码