基于模糊化输入和反转提高神经网络分类性能的方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN911 TP183

基金项目:

国家自然科学基金资助项目(60135010)


METHOD FOR IMPROVING CLASSIFICATION PERFORMANCE OF NEURAL NETWORK BASED ON FUZZY INPUT AND NETWORK INVERSION
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为有效提高神经网络的分类性能,首先提出了一个可处理模糊输入的模糊神经网络结构,然后由模糊输出和非模糊目标输出定义了代价函数,推导出相应的学习算法,并对该模糊神经网络进行反转,提出了模糊化的反转算法.最后,通过计算机仿真实际的模式分类问题,验证了所提出的方法的有效性.实验结果表明,所提出的方法具有学习效率高、分类准确率高、泛化能力高的优点.

    Abstract:

    In order to effectively improve the classification performance of neural network, first architecture of fuzzy neural network with fuzzy input was proposed. Next a cost function of fuzzy outputs and non-fuzzy targets was defined. Then a learning algorithm from the cost function for adjusting weights was derived. And then the fuzzy neural network was inversed and fuzzified inversion algorithm was proposed. Finally, computer simulations on real-world pattern classification problems examine the effectives of the proposed approach. The experiment results show that the proposed approach has the merits of high learning efficiency, high classification accuracy and high generalization capability.

    参考文献
    相似文献
    引证文献
引用本文

武妍 王守觉.基于模糊化输入和反转提高神经网络分类性能的方法[J].红外与毫米波学报,2005,24(1):15~18]. WU Yan, WANG Shou-Jue . METHOD FOR IMPROVING CLASSIFICATION PERFORMANCE OF NEURAL NETWORK BASED ON FUZZY INPUT AND NETWORK INVERSION[J]. J. Infrared Millim. Waves,2005,24(1):15~18.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2004-03-20
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码