组织协同进化分类算法用于雷达目标一维像识别
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TN957 TP391.41

基金项目:

国家自然科学基金重点资助项目(60133010)


ORGANIZATIONAL COEVOLUTIONARY CLASSIFICATION ALGORITHM FOR RADAR TARGET RECOGNITION
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对雷达目标一维像识别问题,提出了一种基于组织协同进化分类算法的识别方法.该方法与现有进化分类方法的不同之处在于它的进化操作直接作用于样本而不是规则,采用了一种自下而上的搜索机制,即先使若干样本的集合得到进化,再从进化结果中提取规则.这样有利于避免在进化过程中产生无意义的规则.该方法不需要进行特征提取;对于高维数据,不需要预先进行降维处理;没有复杂的运算,训练和识别的速度都很快.对3种飞机微波暗室实测数据的识别实验表明,该方法性能稳定,优于基于支撑矢量机与子波核函数的方法,识别率均达到了96%以上.实验中还对算法的抗噪能力进行了测试,获得了良好的效果.

    Abstract:

    An organizational coevolutionary classification algorithm was proposed for recognition based on 1-D images of radar targets. It is different from available EA-based techniques mainly in that its evolutionary operations are performed on the examples directly, but not on the rules. It uses a bottom-up search mechanism, that is, it makes groups of examples evolved, and then rules are extracted from these groups of examples at the end of evolution. This method can avoid generating meaningless rules during the evolutionary process. The proposed method needs not extract the features and reduces the dimensions for high dimensional data previously. It has not complicated computations, with high training and recognition speeds result. Experimental results on the data of 3 airplanes obtained in a microwave anechoic chamber show that the proposed method has a stable performance and outperforms the methods based on SVMs and wavelet kernels. Its predictive accuracy is higher than 96%. In addition, its ability in resisting the noise is also tested, and a good result is obtained.

    参考文献
    相似文献
    引证文献
引用本文

刘静 钟伟才 刘芳 焦李成.组织协同进化分类算法用于雷达目标一维像识别[J].红外与毫米波学报,2004,23(3):208~212]. LIU Jing, ZHONG Wei-Cai, LIU Fang, JIAO Li-Cheng. ORGANIZATIONAL COEVOLUTIONARY CLASSIFICATION ALGORITHM FOR RADAR TARGET RECOGNITION[J]. J. Infrared Millim. Waves,2004,23(3):208~212.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2003-03-11
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码