一种新的模糊规则动态调整正则项系数的神经网络学习方法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP183

基金项目:

国家自然科学基金 (批准号 3 9870 194)资助项目~~


A NOVEL NEURAL NETWORK LEARNING METHOD OF DYNAMICALLY TUNING REGULARIZATION COEFFICIENT ACCORDINT TO FUZZY RULES
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    从偏差-方差模型出发,提出了一种通过模糊规则推理动态调整正则项系数的新方法,并有效地确定了模糊推理规则和隶属度函数,并将该方法与BP算法和固定正则项系数的方法进行了比较,该方法具有精度高、收敛快和泛化能力高等优点,通过实例表明了该方法的有效性。

    Abstract:

    Based on bias variance model, a novel method of dynamically tuning the regularization coefficient by fuzzy rules inference was proposed. The fuzzy inference rules and membership functions were effectively determined. Furthermore, the method was compared with the traditional BP algorithm and fixed regularization coefficien's method. The result is that the proposed method has the merits of the highest precision, rapid convergence and best generalization capacity. The capacity proposed method is shown to be a very effective method by several examples simulation.

    参考文献
    相似文献
    引证文献
引用本文

武妍 张立明.一种新的模糊规则动态调整正则项系数的神经网络学习方法[J].红外与毫米波学报,2002,21(3):189~194]. WU Yan ),) ZHANG Li Ming ). A NOVEL NEURAL NETWORK LEARNING METHOD OF DYNAMICALLY TUNING REGULARIZATION COEFFICIENT ACCORDINT TO FUZZY RULES[J]. J. Infrared Millim. Waves,2002,21(3):189~194.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:2001-09-27
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码