基于信息叠加的学习算法
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP301.6

基金项目:

中国科学院资助项目,69772002,


LEARNING ALGORITHM BASED ON THE SUPERPOSITION OF INFORMATION
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了一种基于信息叠加的迭代学习算法。该算法利用协同神经网络中的原型模式具有信息的 性,将学习中误识率最高 的模式作为反馈量来修正原型模式。利用实际采集得到的样本对新算法进行的测试表明:新算法具有最优搜索能力强,训练时间短的特点。另外,将新算法与基于遗传算法的原型模式选取算法在网络训练性能上进行了比较。

    Abstract:

    A new iterative learning algorithm based on the superposition of information was proposed. Because the prototype patterns of synergetic neural network (SNN) has the ability of superposition of information, the new algorithm can modify the prototype patterns using the pattern, of which the recognition rate is the lowest during training as the feedback. The test upon the samples from real environment shows that the new algorithm has the characteristic of strong ability of optimal searching and the shorteness of training time. Additionally, the comparison of training performance between the new algorithm and selection algorithm of prototype patterns based on genetic algorithm(SAPPGA) was made.

    参考文献
    相似文献
    引证文献
引用本文

王海龙 戚飞虎.基于信息叠加的学习算法[J].红外与毫米波学报,2000,19(3):205~208]. WANG Hai-Long, QI Fei-Hu. LEARNING ALGORITHM BASED ON THE SUPERPOSITION OF INFORMATION[J]. J. Infrared Millim. Waves,2000,19(3):205~208.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码