(英)CCNet:面向多光谱图像的高速船只检测级联卷积神经网络
作者:
作者单位:

1.中国科学院半导体研究所 3.中国科学院大学;2.1.中国科学院半导体研究所 2. 中国科学院脑科学与智能技术卓越创新中心3.中国科学院大学

作者简介:

通讯作者:

中图分类号:

基金项目:

国家重点研发计划项目(Grant No. 2016YFA0202200)、国家自然科学基金(Grant Nos. 61434004, 61234003)、青年科学基金(Nos. 61504141, 61704167)、中国科学院青年创新促进会基金(No. 2016107)


CCNet: A high-speed cascaded convolutional neural network for ship detection with multispectral images
Author:
Affiliation:

1.Institute of Semiconductors, Chinese Academy of Sciences 3.University of Chinese Academy of Sciences;2.1.Institute of Semiconductors, Chinese Academy of Sciences 2.Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences 3.University of Chinese Academy of Sciences

Fund Project:

National Key Research and Development Program of China (Grant No. 2016YFA0202200), National Natural Science Foundation of China (Grant Nos. 61434004, 61234003), National Natural Science Foundation for the Youth of China (Nos. 61504141, 61704167), Youth Innovation Promotion Association Program, Chinese Academy of Sciences (No. 2016107).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对实现遥感图像中船只目标的快速检测,提出了一个采用多光谱图像、基于级联的卷积神经网络(CNN)船只检测方法CCNet。该方法所采用两级级联的CNN依次实现感兴趣区域(ROI)的快速搜索、基于感兴趣区域的船只目标定位和分割。同时,采用含有更多细节信息的多光谱图像作为CCNet的输入,能够提升网络提取特征鲁棒性,从而使得检测更加精确。基于SPOT 6卫星多光谱图像的实验表明:与当前主流的深度学习船只检测方法相比,该方法能够在实现高检测精准度的基础上将检测速度提高5倍以上。

    Abstract:

    A novel ship detection method using cascaded convolutional neural network (CCNet) with multispectral image is proposed to achieve high-speed detection. The CCNet employs two cascaded convolutional neural networks (CNN) for extracting regions of interest (ROIs), locating and segmenting ship objects sequentially. Benefit from the abundant details of the multispectral image, CCNet can extract more robust feature for achieving more accurate detection. The efficiency of CCNet has been validated by the experiments on SPOT 6 satellite multispectral images. In comparison with the state-of-the-art deep learning based ship detection algorithms, the experimental results indicate that the proposed ship detection algorithm accelerates the processing by more than 5 times with a high accurate detection performance.

    参考文献
    相似文献
    引证文献
引用本文

张忠星,李鸿龙,张广乾,朱文平,刘力源,刘剑,吴南健.(英)CCNet:面向多光谱图像的高速船只检测级联卷积神经网络[J].红外与毫米波学报,2019,38(3):290~295]. ZHANG Zhong-Xing, LI Hong-Long, ZHANG Guang-Qian, ZHU Wen-Ping, LIU Li-Yuan, LIU Jian, WU Nan-Jian. CCNet: A high-speed cascaded convolutional neural network for ship detection with multispectral images[J]. J. Infrared Millim. Waves,2019,38(3):290~295.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2018-10-31
  • 最后修改日期:2018-11-27
  • 录用日期:2018-12-07
  • 在线发布日期: 2019-07-02
  • 出版日期:
文章二维码