Abstract:Radiometric calibration was of critical importance for information quantification of satellite remote sensing of environment,and in the field of optical remote sensing,the calibration of remote sensors played key roles. Now, transfer the standard cryogenic absolute radiometer to trap detector was the highest accuracy standard method. With a gold-plated hemisphere reflector added to a thermopile detector with electrical substituted pins, an infrared trap detector is designed and brought forward technical proposals of calibration. Established a high accurate calibration system based on cryogenic absolute radiometer and infrared spectrum calibration facility based on infrared monochromatorto calibrated the linearity, stability, spatial uniformity and absolute spectral responsibility of infrared trap detector. The combined relative uncertainty in the spectral responsivity of infrared trap detector from 1.1μm to 3.0μm was below 1%. From the results of experiment, we can conclude that the calibration technology based on this transfer detector will effectively improve the calibration accuracy of sensors through its shorter calibration chain, and increase the calibration accuracy of infrared absolute responsibility. This improvement will create a one-step scale transfer between the monochromator-based calibration systems and the cryogenic absolute radiometer.