精确提取InSAR时间去相关分量的方法
作者:
作者单位:

东南大学交通学院测绘工程系,武汉大学测绘遥感信息工程国家重点实验室

作者简介:

通讯作者:

中图分类号:

基金项目:

江苏省自然科学基金项目青年基金; 测绘遥感信息工程国家重点实验室开放基金; 国家自然科学基金项目面上项目;


Accurate extraction of InSAR temporal decorrelation component
Author:
Affiliation:

Dept. of Surveying & Mapping Engineering, School of Transportation, Southeast University,State Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing (LIESMARS), Wuhan University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了一种干涉合成孔径雷达(InSAR, Synthetic Aperture Radar Interferometry)回波信号时间去相关分析的新方法,该方法主要包括三个步骤:采用自适应区域增长算法(IDAN, Intensity-Driven Adaptive Neighborhood)估计所有干涉子集的相干性;利用迭代最小二乘去除估计量偏差;采用相干性分解技术对无偏样本相干性进行分离,获得精确的时间去相关分量.以美国南加州洛杉矶地区的ENVISAT ASAR数据集为例,对新方法和现有方法进行了比较研究.结果表明,新的融合算法能够获得更加可靠、精度更高的时间去相关分量,并具有非阈值和近乎完全的自适应性.本文的研究将有利于改善与时间相干性有关的地球物理参数反演,也有利于地表变化周期性和随时间变化的气候环境实时监测等.

    Abstract:

    We presented a novel approach for accurate temporal coherence decorrelation analysis of InSAR echo signal. The proposed algorithm is divided into three steps: Firstly, using the modified Intensity-Driven Adaptive Neighborhood (IDAN) algorithm to estimate interferometric coherence; then using least squares fitting to remove deviation; finally, obtaining accurate temporal coherence decorrelation component with coherence decomposition technique by separating approximate unbiased coherence. We analyzed the ENVISAT ASAR data from the area of Los Angeles with the new method. The result was compared with the existing methods. The result shows that the new fusion algorithm is able to obtain more reliable and accurate temporal coherence decorrelation component. Meanwhile, the characteristics for the new method of non-threshold and almost adaptive performance were proved.

    参考文献
    相似文献
    引证文献
引用本文

田馨,廖明生.精确提取InSAR时间去相关分量的方法[J].红外与毫米波学报,2016,35(4):454~461]. TIAN Xin, LIAO Ming-Sheng. Accurate extraction of InSAR temporal decorrelation component[J]. J. Infrared Millim. Waves,2016,35(4):454~461.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-12-13
  • 最后修改日期:2016-03-07
  • 录用日期:2016-03-09
  • 在线发布日期: 2016-09-09
  • 出版日期:
文章二维码