基于梯度转向核的半随机傅里叶域压缩重构算法
作者:
作者单位:

上海大学 计算机工程与科学学院,上海大学 计算机工程与科学学院,上海大学 计算机工程与科学学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


A gradient-based steering kernel reconstruction strategy for semi-random Fourier measurements in compressed remote sensing
Author:
Affiliation:

School of Computer Engineering and Science,Shanghai University,School of Computer Engineering and Science,Shanghai University,School of Computer Engineering and Science,Shanghai University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对压缩遥感过程中非严格稀疏和傅里叶域欠采样噪声导致的伪影和混叠现象,提出了基于梯度转向核的压缩重构策略(GradSK).在压缩感知编码过程中提出了半随机傅里叶测量的方式,既保留图像的概要分量,同时保证了K-空间随机欠采样的非连贯性.在压缩感知解码过程中提出了由基于多阶梯度的转向核与有限差分总方差(TV)结合的方法,来解决解码过程中的无约束凸框架问题.实验表明,该方法在解决无噪采样和有噪采样的过程中均有较好性能.

    Abstract:

    A gradient-based steering kernel (GradSK) reconstruction strategy for compressed remote sensing is proposed. It aims to solve the artifacts and blurriness caused by the none-strictly sparsity and the noisy Fourier undersamples. Semi-random Fourier measurements are presented for encoding, which can preserve approximating components of images and retain the incoherence by random undersamples in the periphery of K-space. The steering kernel derived from multistep gradients is exploited to encapsulate with finite-difference Total Variance (TV) in the unconstrained convex framework for decoding. Numerical results demonstrate the superior performance of this algorithm in the case of noiseless and noisy measurements for compressed remote sensing.

    参考文献
    相似文献
    引证文献
引用本文

董江山,尹京苑,李成范.基于梯度转向核的半随机傅里叶域压缩重构算法[J].红外与毫米波学报,2015,34(6):673~679]. DONG Jiang-Shan, YIN Jing-Yuan, LI Cheng-Fan. A gradient-based steering kernel reconstruction strategy for semi-random Fourier measurements in compressed remote sensing[J]. J. Infrared Millim. Waves,2015,34(6):673~679.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-09-30
  • 最后修改日期:2015-10-15
  • 录用日期:2014-11-17
  • 在线发布日期: 2015-12-01
  • 出版日期:
文章二维码