一种面向高斯差分图的压缩感知目标跟踪算法
作者:
作者单位:

江南大学 轻工过程先进控制教育部重点实验室,物联网工程学院,江南大学 物联网工程学院,江南大学 物联网工程学院,中国科学院合肥智能机械研究所,江南大学 物联网工程学院,西安交通大学 机械工程学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61362030,61201429),新疆维吾尔自治区自然科学基金(201233146-6),新疆维吾尔自治区高校科研计划重点项目(XJEDU2012I08),


Target tracking by compressive sensing based on Gaussian differential graph
Author:
Affiliation:

Key Laboratory of Advanced Process Control for Light Industry (Jiangnan University), Ministry of Education,Shcool of Internet of Things Engineering,Jiangnan University,Shcool of Internet of Things Engineering,Jiangnan University,Institute of Intelligent machines,Chinese Academy of Sciences,Shcool of Internet of Things Engineering,Jiangnan University,School of Mechanical Engineering, Xi’an Jiaotong University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对压缩感知目标跟踪算法在目标纹理改变、比例缩放、光照变化剧烈时鲁棒性不足, 提出一种面向高斯差分图的实时跟踪算法.首先, 构建图像的多尺度空间及其对应的高斯差分图, 实现高斯差分图的特征提取并获取压缩感知的输入信号;然后, 通过压缩降维, 目标邻域遍历, 参数更新等过程, 计算出面向高斯差分图的后续帧的目标最优跟踪窗;最后, 将跟踪窗投影到对应的原始图像上, 完成面向视频流的目标跟踪.高斯差分图像是单通道灰度图, 具有灰度取值范围小、数值低、结构简单、维数少等特点, 增强了特征对纹理改变、比例缩放和光照变化的稳健性, 且继承了传统算法的实时性.实验证明, 该算法能够快速准确地实现复杂环境下的移动目标跟踪任务.

    Abstract:

    As traditional target tracking based on compressive sensing has poor robustness in texture change, scale variation and illumination change, a real-time tracking algorithm using compressing sensing based on Gaussian differential graph was proposed. Firstly, Gaussian differential graph is acquired from multi-scale space of image. The features are extracted from the graph and taken as input signals of impressive sensing. Secondly, by compressing, dimension reduction, target neighborhood traversal, parameters update, the optimal search window is estimated. Thirdly, the search window is mapped onto the corresponding original image, and target tracking in the video sequences is finished. Gaussian differential graph had some characteristics such as single-channel, small grayscale range, low value, simple structure, small dimensions, which make the algorithm have strong robustness in scaling, texture and illumination changing. The real-time performance was inherited from the traditional algorithm. Experiments proved that with the proposed algorithm the moving target can be tracked quickly and accurately in a complex environment.

    参考文献
    相似文献
    引证文献
引用本文

孔军,蒋敏,唐晓微,孙怡宁,姜克,温广瑞.一种面向高斯差分图的压缩感知目标跟踪算法[J].红外与毫米波学报,2015,34(1):100~105]. KONG Jun, JIANG Min, TANG Xiao-Wei, SUN Yi-Ning, JIANG Ke, WEN Guang-Rui. Target tracking by compressive sensing based on Gaussian differential graph[J]. J. Infrared Millim. Waves,2015,34(1):100~105.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2013-11-21
  • 最后修改日期:2013-12-08
  • 录用日期:2013-12-12
  • 在线发布日期: 2015-04-03
  • 出版日期:
文章二维码