基于多值免疫网络的红外与可见光协同目标检测
作者:
作者单位:

中国电子科技集团公司二十八所,武汉大学电子信息学院,武汉大学测绘遥感信息工程国家重点实验室

作者简介:

通讯作者:

中图分类号:

基金项目:

国家高技术研究发展计划(863计划);国家科技支撑计划项目; 湖北省自然科学基金项目; 中央高校基本科研业务费专项资金资助项目


Target detection in thermal-visible surveillance based on multiple-valued immune network
Author:
Affiliation:

28th Institute of China Electronics Technology Group Corporation,School of Electronic Information,Wuhan University,State Key Laboratory for Information Engineering in Surveying,Mapping and Remote Sensing,Wuhan University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    采用模糊自适应共振神经网络建立红外与可见光各自的背景模型;依据多值免疫网络模型, 将红外背景模型视为B细胞, 可见光背景模型视为T细胞, 设计一系列免疫应答策略来协同建立B细胞与T细胞的交互模型, 并以此分析各像素点的背景模糊隶属度来检测目标.实验结果表明, 该算法的F1指标高达96.4%, 能有效协同互补红外与可见光信息, 检测出复杂场景下的目标.

    Abstract:

    Two fuzzy adaptive resonance neural networks were utilized to build the background models of thermal and visible components. According to the multiple-valued immune network model, a series of immune response strategies were designed to cooperate B cell with T cell to build the interactive model, which takes the infrared background model as B cell and the visible background model as T cell. With the interactive model, the targets are detected according to the degree of fuzzy match between pixels and models. Experimental results show that the F1 measurement of the proposed approach is up to 96.4%. It is able to complement information between thermal and visible components effectively. The method is capable of detecting targets in complex scenes effectively.

    参考文献
    相似文献
    引证文献
引用本文

陈炳文,王文伟,秦前清.基于多值免疫网络的红外与可见光协同目标检测[J].红外与毫米波学报,2014,33(6):654~659]. CHEN Bing-Wen, WANG Wen-Wei, QIN Qian-Qing. Target detection in thermal-visible surveillance based on multiple-valued immune network[J]. J. Infrared Millim. Waves,2014,33(6):654~659.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2013-06-04
  • 最后修改日期:2014-10-07
  • 录用日期:2013-10-24
  • 在线发布日期: 2014-11-27
  • 出版日期:
文章二维码