数据驱动二次相关滤波器红外目标检测
作者:
作者单位:

西北工业大学自动化学院, 北京航天自动控制研究所,西北工业大学自动化学院,西北工业大学自动化学院,北京航天自动控制研究所, 宇航智能控制技术国家级重点实验室

作者简介:

通讯作者:

中图分类号:

基金项目:


Data-driven quadratic correlation filter using sparse coding for infrared targets detection
Author:
Affiliation:

College of Automation, Northwestern Polytechnical University. Beijing Aerospace Automatic Control Institute,College of Automation, Northwestern Polytechnical University,College of Automation, Northwestern Polytechnical University,Beijing Aerospace Automatic Control Institute, National Key Laboratory of Science and Technology on Aerospace Intelligent Control

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对传统红外目标检测算法易受目标和背景先验样本质量、目标姿态和视角及噪声等的影响, 提出了一种新的基于稀疏编码的数据驱动二次相关滤波器目标检测算法, 其中给出了目标自相关矩阵基字典的概念, 该数据驱动滤波器模型能包容多种姿态和视角的目标, 并能抑制噪声和样本质量的影响, 同时可以舍弃对无规律背景样本的依赖, 通过对行人和车辆的实验验证了该算法的有效性.所提算法的设计思想对诸多滤波器算法的改进具有很好的借鉴意义.

    Abstract:

    The traditional target detection methods suffer from the quality of target and background training samples, attitude of target, visual angle of target and noise, etc. In order to overcome these limits, a novel method of data-driven quadratic correlation filter based on sparse coding was proposed, in which the dictionary of target autocorrelation matrix is built. This model not only detects target with multiple attitudes and visual angles, but also is insensitive to noise and the quality of training samples. This model is independent of the randomness in different backgrounds. The experimental results on pedestrian and vehicle show that the proposed algorithm is effective. The idea of proposed algorithm is a good reference for improving the methods of filtering.

    参考文献
    相似文献
    引证文献
引用本文

高仕博,程咏梅,赵永强,肖利平.数据驱动二次相关滤波器红外目标检测[J].红外与毫米波学报,2014,33(5):498~506]. GAO Shi-Bo, CHENG Yong-Mei, ZHAO Yong-Qiang, XIAO Li-Ping. Data-driven quadratic correlation filter using sparse coding for infrared targets detection[J]. J. Infrared Millim. Waves,2014,33(5):498~506.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2013-04-11
  • 最后修改日期:2013-08-11
  • 录用日期:2013-08-14
  • 在线发布日期: 2014-11-12
  • 出版日期:
文章二维码