光谱角匹配加权核特征空间分离变换高光谱异常检测算法
DOI:
作者:
作者单位:

南京理工大学 江苏省光谱成像与智能感知重点实验室,南京理工大学 江苏省光谱成像与智能感知重点实验室,南京理工大学 江苏省光谱成像与智能感知重点实验室,南京理工大学 江苏省光谱成像与智能感知重点实验室,南京理工大学 江苏省光谱成像与智能感知重点实验室

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


SAM weighted KEST algorithm for anomaly detection in hyperspectral imagery
Author:
Affiliation:

Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sence, Nanjing University of Science and Technology,Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sence, Nanjing University of Science and Technology,Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sence, Nanjing University of Science and Technology,Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sence, Nanjing University of Science and Technology,Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sence, Nanjing University of Science and Technology

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了一种光谱角匹配(SAM)加权核特征空间分离变换(KEST)高光谱异常检测算法.在基于核的特征空间分离变换(KEST)算法基础上,利用光谱角匹配(SAM)测度对高维特征空间中检测点邻域差异相关矩阵(DCOR)中的每个样本引入权重因子,各样本权重因子取决于该样本光谱向量与检测窗口数据中心向量夹角,从而抑制检测窗口中的病态数据,突出主成分数据的贡献,使得DCOR矩阵能够更好地描述目标、背景数据分布差异.通过理论分析和对模拟、实际数据实验比较,证明该算法较传统异常检测算法和KEST算法具有更高的检测率.

    Abstract:

    A SAM weighted KEST algorithm based on kernel eigenspace separation transform (KEST) was proposed for anomaly detection in hyperspectral imaging. Weights are introduced for each sample in the difference correlation matrix (DCOR), and the input pixel neighbor surroundings. All samples were weighted according to the angle between the sample spectral vector and the centered vector in detection window to minimize the influence of anomalous data and outstand the contribution of principle component. In this way, DCOR represented the difference between target and background distribution much better. Experimental results indicate that the proposed method shows superior performance over the conventional anomaly detection algorithms and KEST.

    参考文献
    相似文献
    引证文献
引用本文

韩 静,岳 江,张 毅,柏连发,陈 钱.光谱角匹配加权核特征空间分离变换高光谱异常检测算法[J].红外与毫米波学报,2013,32(4):359~365]. HAN Jing, YUE Jiang, ZHANG Yi, BAI Lian-fa, CHEN Qian. SAM weighted KEST algorithm for anomaly detection in hyperspectral imagery[J]. J. Infrared Millim. Waves,2013,32(4):359~365.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2012-02-27
  • 最后修改日期:2012-10-29
  • 录用日期:2012-08-23
  • 在线发布日期: 2013-08-29
  • 出版日期:
文章二维码