基于免疫克隆高斯过程隐变量模型的SAR目标特征提取与识别
DOI:
作者:
作者单位:

西安电子科技大学智能感知与图像理解教育部重点实验室,西安电子科技大学智能感知与图像理解教育部重点实验室,西安电子科技大学智能感知与图像理解教育部重点实验室,西安电子科技大学智能感知与图像理解教育部重点实验室,西安电子科技大学智能感知与图像理解教育部重点实验室

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61072106,60972148,61050110144);陕西省自然科学基金(2011JQ8020);中央高校基本科研业务费专项资金(JY10000902001, JY10000902045, K50511020011资助。


Gaussian process latent variable model based on immune clonal selection for SAR target feature extraction and recognition
Author:
Affiliation:

Xidian University,Xidian University,Xidian University,Xidian University,Xidian University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    作为一种非线性维数约减算法,高斯过程隐变量模型(Gaussian process latent variable model, GPLVM)由于其适合处理小样本、高维数据,因而在模式识别、计算机视觉等领域得到了广泛应用.基于此,提出一种基于改进GPLVM的SAR图像目标特征提取及自动识别方法,其中利用改进的GPLVM进行特征提取,高斯过程分类进行目标识别.传统GPLVM使用共轭梯度法对似然函数进行优化,为避免梯度估值易受噪声干扰、步长对算法影响严重等缺点,提出基于免疫克隆选择算法的GPLVM,利用其具有快速收敛到全局最优的特性提高算法性能.实验结果表明,该算法不仅降低了特征维数,且提高了识别精度,从而验证了算法用于SAR图像目标识别的有效性.

    Abstract:

    As a nonlinear dimension reduction algorithm, Gaussian process latent variable model (GPLVM) has been widely applied in pattern recognition and computer vision for its capability in dealing with small size and high-dimensional samples. As GPLVM can discover low-dimensional manifolds in high-dimensional data given only a small number of samples, a new SAR target recognition method was proposed, in which a modified GPLVM was used for feature extraction and Gaussian process classification was employed as the classifier. In GPLVM, the likelihood was optimized by using the scaled conjugate gradient. In order to avoid the noise effect to gradient estimate and overcome the disadvantage that the performance is severely affected by the step length, the immune clone selection algorithm based GPLVM was developed for target feature extraction where the immune clonal selection algorithm characterized by rapid convergence to global optimum was utilized to improve the performance. The experimental results show that the method not only reduces the dimension but also gets higher accuracy.

    参考文献
    相似文献
    引证文献
引用本文

张向荣,缑丽敏,李阳阳,冯捷,焦李成.基于免疫克隆高斯过程隐变量模型的SAR目标特征提取与识别[J].红外与毫米波学报,2013,32(3):231~236]. ZHANG Xiang-Rong, GOU Li-Min, LI Yang-Yang, FENG Jie, JIAO Li-Cheng. Gaussian process latent variable model based on immune clonal selection for SAR target feature extraction and recognition[J]. J. Infrared Millim. Waves,2013,32(3):231~236.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2012-02-22
  • 最后修改日期:2012-04-26
  • 录用日期:2012-04-27
  • 在线发布日期: 2013-06-14
  • 出版日期:
文章二维码