一种基于全变差模型的欠采样图像重构方法
DOI:
作者:
作者单位:

西北工业大学理学院,西北工业大学理学院,西北工业大学理学院

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金(61071170),教育部新世纪优秀人才支持计划。


A new undersampling image reconstruction method based on total variation model
Author:
Affiliation:

School of Science, Northwestern Polytechnical University,School of Science, Northwestern Polytechnical University,School of Science, Northwestern Polytechnical University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于全变差范数最小化模型,构造了一种新的图像重构算法;利用欠采样域内的融合信息,结合构造的图像重构算法,提出了一种基于压缩感知理论的图像融合模型.数值实验表明,构造的重构算法与传统算法相比,在一定程度上减少了所需的采样数量;提出的融合模型对多类图像具有较优的融合效果.

    Abstract:

    A new image reconstruction algorithm was proposed based on the TV norm minimization model. Then using the under sampling fusion information, combined with the image reconstruction algorithm, a fusion model based on compressed sensing is proposed. Numerical results show that the proposed image reconstruction method can reduce the sampling number required to some extent compared with the traditional algorithm. The proposed fusion model has good performance for many kinds of images.

    参考文献
    相似文献
    引证文献
引用本文

杨 扬,刘 哲,张 萌.一种基于全变差模型的欠采样图像重构方法[J].红外与毫米波学报,2012,31(2):153~158]. YANG Yang, LIU Zhe, ZHANG Meng. A new undersampling image reconstruction method based on total variation model[J]. J. Infrared Millim. Waves,2012,31(2):153~158.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2011-04-19
  • 最后修改日期:2011-12-12
  • 录用日期:2011-08-08
  • 在线发布日期: 2012-04-23
  • 出版日期:
文章二维码