基于量子免疫克隆聚类的SAR图像变化检测
作者:

Change detection for SAR images based on quantum-inspired immune clonal clustering algorithm
Author:
  • 摘要
  • | |
  • 访问统计
  • | |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    传统的基于进化聚类方法在处理变化检测时耗时过长,在搜索最优聚类中心过程中容易陷入局部最优,对于SAR图像的变化检测存在边缘定位不够准确的缺点,提出了基于量子免疫克隆聚类的SAR图像变化检测方法.把图像的灰度值作为输入信息,通过量子比特定义聚类中心,通过量子免疫克隆算法来搜索最优聚类中心,从而得到更佳的全局阈值,最后根据阈值得到变化检测结果.实验结果表明,与K&I阈值法相比,可以得到更佳的全局阈值;与遗传聚类算法相比,可以快速、有效地搜索到更优聚类中心,准确定位边缘,提高变化检测精度.

    Abstract:

    As the conventional evolutionary clustering optimization methods are often time-consuming and easy to trap in local optimal value in dealing with the problem of change detection. Furthermore, it can not detect the edge accurately for SAR images. We proposed a method for change detection in SAR images based on the clustering analysis. The proposed method takes gray-levels as an input, uses the quantum bit to define the clustering center, searches the optimal cluster center using the quantum-inspired immune clonal algorithm, and gets the global threshold. Finally, the change-detection map is produced. Compared with K&I threshold, it can achieve a better value. Compared with Genetic Algorithm Based Clustering (GAC), the proposed method can search a much better clustering center quickly and effectively. Besides, it can detect the accurate edge and improve the change detection accuracy.

    参考文献
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李阳阳,吴娜娜,焦李成,尚荣华,刘若辰.基于量子免疫克隆聚类的SAR图像变化检测[J].红外与毫米波学报,2011,30(4):372~376]. LI Yang-Yang, WU Na-Na, JIAO Li-Cheng, SHANG Rong-Hua, LIU Ruo-Chen. Change detection for SAR images based on quantum-inspired immune clonal clustering algorithm[J]. J. Infrared Millim. Waves,2011,30(4):372~376.]

复制
分享
文章指标
  • 点击次数:2569
  • 下载次数: 4561
  • HTML阅读次数: 138
  • 引用次数: 0
历史
  • 收稿日期:2010-08-30
  • 最后修改日期:2011-04-08
  • 录用日期:2010-12-27
  • 在线发布日期: 2011-08-25
文章二维码