基于非负矩阵分解的高光谱遥感图像混合像元分解
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家高技术研究发展计划(863计划),国家自然科学基金项目(面上项目,重点项目,重大项目)


Hyperspectral unmixing based on nonnegative matrix factorization
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    传统非负矩阵分解算法的目标函数具有大量的局部极小, 在进行高光谱图像的光谱解混时, 受初始值的影响很大.为解决该问题, 作者通过在目标函数中引入丰度分离性和平滑性的约束条件, 提出一种基于有约束非负矩阵分解的混合像元分解方法.同时该算法能够满足混合像元分解问题所要求的丰度值非负以及和为一的约束.模拟和实际数据实验结果表明, 所提出的算法能够很好地克服局部极小的问题, 从而得到更优的解.同时该算法表现出了较强的抗噪声能力, 并且能够适用于无纯像元数据的混合像元分解.

    Abstract:

    Because of the local minima in the objective function, the traditional Nonnegative Matrix Factorization (NMF) algorithm is sensitive to the initial value when being applied to hyperspectral unmixing. In order to solve the problem, a new approach based on constrained NMF was proposed for decomposition of mixed pixels by introducing constraints of abundance separation and smoothness into the objective function of NMF. The algorithm can also satisfy the abundance nonnegative and sum-to-one constraints, which are necessary for hyperspectral unmixing. Experimental results on simulated and real hyperspectral data demonstrate that the proposed approach can overcome the shortcoming of local minima, and obtain better results. Meanwhile, the algorithm performs well for noisy data, and can also be used for the unmixing of hyperspectral data in which pure pixels do not exist.

    参考文献
    相似文献
    引证文献
引用本文

刘雪松,王斌,张立明.基于非负矩阵分解的高光谱遥感图像混合像元分解[J].红外与毫米波学报,2011,30(1):27~32]. LIU Xue-Song, WANG Bin, ZHANG Li-Ming. Hyperspectral unmixing based on nonnegative matrix factorization[J]. J. Infrared Millim. Waves,2011,30(1):27~32.]

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2010-01-26
  • 最后修改日期:2010-01-26
  • 录用日期:2010-03-05
  • 在线发布日期: 2011-02-24
  • 出版日期:
文章二维码