文章编号: 1672-8785(2017)03-0006-06

自由曲面在离轴光学系统中的应用

周 鑫^{1,2} 肖锡晟¹ 孙胜利¹ (1中国科学院上海技术物理研究所,上海 200083;

2上海科技大学,上海 201210)

摘 要: 针对自由曲面能提升成像光学系统的性能和校正像差的特点,分析了自由曲面 在离轴光学系统中的应用优势。光学系统选用视场角为 30°×11°、焦距为 150 mm、 F数为 3 的 Cook-TMA。本设计中,离轴三反光学系统的主反射镜采用自由曲面设计。 分析了使用 Zernike 多项式曲面在大视场离轴反射式光学系统中对离轴光学系统性能的 提升效果,并与使用常规非球面的情况进行了比较,分析了自由曲面的优缺点。结果 表明,自由曲面在提高离轴光学系统的成像质量方面具有更大的优势,系统的平均传 递函数比常规非球面提升了 15.9% 以上,系统接近衍射极限。 Zernike 多项式曲面在离 轴三反系统中的应用效果良好,系统的成像性能得到了较大的提升。

关键词: 自由曲面; 大视场; 离轴三反光学系统; Zernike 多项式

中图分类号: TH703 文献标志码: A DOI: 10.3969/j.issn.1672-8785.2017.03.002

Application of Free-form Surface in Off-axis Optical Systems

ZHOU Xin^{1,2}, XIAO Xi-sheng¹, SUN Sheng-li¹

(1 Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;
2 Shanghai Tech University, Shanghai 201210, China)

Abstract: According to the features of free-form surfaces which can improve the performance of optical systems and correct aberration, the advantages of using free-form surfaces in off-axis optical systems are analyzed. The optical system used is a Cook-TMA with a field angle of $30 \circ \times 11 \circ$, a focal length of 150 mm and a F number of 3. In this design, the main reflector in the off-axis three-mirror optical system is designed by using a free-form surface. The performance improvement of using Zernike polynomial surface in a wide field off-axis reflecting optical system is analyzed and compared with that of the use of conventional aspheric surface. The advantages and disadvantages of free-form surfaces are analyzed. The results show that free-form surfaces have more advantages in the improvement of imaging quality of off-axis optical systems. The average transfer function of using free-form surface is 15.9% higher than that of using conventional aspheric surface. The system is close to the diffraction limit. The use effectiveness of Zernike polynomial surface in the off-axis three-mirror optical system is good and the imaging performance of the system is improved greatly.

Key words: free-form surface; large field of view; off-axis three-mirror optical system; Zernike polynomial

收稿日期: 2017-02-13

作者简介:周鑫(1991-),男,浙江湖州人,硕士研究生,主要研究大视场航天遥感器光学设计理论与实践。 E-mail: zhouxin1991@hotmail.com

0 引言

与折射式和同轴反射式光学系统相比,离轴 反射式光学系统具有无色差、无遮拦等优点。随 着人们对遥感影像的要求越来越高,常规的球面 或非球面已难以消除因离轴光学系统视场、分 辨率等性能提升带来的像差影响。自由曲面拥 有复杂多变的面形变量,可为光学系统提供足 够的设计自由度,尤其在离轴光学系统中可以 实现很多以前无法达到的指标,常被用来增大光 学视场和矫正系统像差。光学自由曲面 [1] 是指 区别于球面、二次曲面和偶次非球面等传统面 形,具有非旋转对称特性的曲面。不同于照明领 域^[2],光学成像领域^[3]需要镜片面形的形状精 度在几个微米内。以前由于受加工工艺和检测方 案的制约和没有非常完善的设计方法,自由曲 面在离轴成像光学系统中并未得到广泛应用。 如何才能高效、完善地将自由曲面的面形用电 脑可计算、机械可加工的形式表征出来,一直是

随着科技的进步,自由曲面在离轴光学系 统中变得越来越重要。 2008年,浙江大学的孙 旭涛^[4] 在研制的超薄投影光学系统中,采用自 由曲面设计了其中的离轴反射光学系统,实现 了视场角的扩展,达到了130°。清华大学精密 测试技术及仪器国家重点实验室的朱钧^[5]等人 利用自由曲面研制了一个 F 数为 1.38、视场角 为4°×5°的离轴三反光学系统,用于红外系 统中时测试效果良好。 2006年在夏威夷岛上建 成的 James Clerk Maxwell 望远镜上的 SCUBA-2^[6] 广角成像仪,通过用9块自由曲面反射镜增大视 场角,扩大了视野。2016年1月成功建造完成、 坐落于夏威夷的 4.2 m 直径的 Daniel K. Inouye 太 阳能望远镜 (DKIST)^[7] 的离轴主反射镜是采用 Zernike 多项式设计的,这种离轴光学设计将杂 散光减小到了最小化,实现了约20km的空间分 辨率。

本文将分析考虑离轴成像光学系统的设计 指标需求和光学自由曲面的相关特性,研究光 学自由曲面在离轴光学系统中的应用效果,将离 轴三反光学系统的主反射镜设计为自由曲面, 并分析对比自由曲面和常规非球面的优劣。

1 自由曲面描述方法

1.1 NURBS 曲面

NURBS 曲面^[8] 可用离散的网格状多边形控制节点向量表示。形式为

$$Q(u,\nu) = \frac{\sum_{i=1}^{n+1} \sum_{j=1}^{m+1} w_{i,j} B_{i,j} N_{i,k}(u) N_{j,l}(\nu)}{\sum_{i=1}^{n+1} \sum_{j=1}^{m+1} w_{i,j} N_{i,k}(u) N_{j,l}(\nu)}$$
(1)

式中, *B_{i,j}* 为曲面的控制顶点,对应控制顶点 *B_{i,j}* 的权重值,该值实际上表示各控制顶点对曲 面形状的影响程度。在实际应用中,结合所需曲 面面形,并通过控制顶点、权重值及曲面上的已 知点三者的关系变化,找到控制变量与面形之间 的关系,以此来实现 NURBS 曲面的面形优化。 需要注意的是,如果想要获得复杂的面形,控制 点的数量也需相应增多,这势必会导致复杂程 度的增加,而且在设计之前需要确定控制点。因 此,该方法在光学自由曲面中的应用不如多项 式描述法广泛。

1.2 Zernike 多项式

$$z = \frac{cr^2}{1 + \sqrt{1 - (1+k)c^2r^2}} + \sum_{i=1}^{n} A_i Z(x, y) \qquad (2)$$

式中, N 为多项式的项数 [9], A_i 为第 i 项的系 数, c 为顶点的曲率, r 为径向口径, ρ 为极坐 标的半径, φ 为极坐标的角度。Zernike 多项式 是多项式描述法中最常用的一种。ZEMAX 软件 中可选取 Zernike fringe sag(泽尼克边缘矢高) 来 设计离轴三反光学系统的主镜。Zernike 多项式 表征函数具有优秀的全局面形表征能力,而且它 具有一个很重要的特性,就是在单位圆域上正 交。在优化过程中,如果设计需要添加新的高阶 项来进一步完善自由曲面,由于正交性,新的项 加入并不会引起其他项的系数的变化,而且还 可以根据结果找出贡献非常小的项,将其删减。 更重要的是, Zernike 多项式与 Seidel 像差具有

困扰研究人员的一大难题。

很好的对应关系^[10],见表1。进行像差校正时可以方便地利用这种对应关系,优化过程更具简便性和针对性。

表1 Zernike 多项式的系数表达式及 与 Seidel 像差的对应关系

Z	多项式表达式	对应 Seidel 像	像差图样
1	1	常量	
2	$\rho \cos \theta$	X轴向倾斜	
3	$\rho \sin \theta$	Y 轴向倾斜	
4	$\rho^2 \cos 2\theta$	初级像散	0
5	$2\rho^2 - 1$	离焦	
6	$\rho^2 \sin 2\theta$	Y轴45°像	
7	$\rho^3 \cos 3\theta$	X轴三阶彗	0
8			

2 主要内容

本文中,离轴成像光学系统的参数由其所在 轨道高度、刈幅宽度、地面像元分辨率 (Ground Sampling Distance, GSD)、光谱范围以及探测器 像元尺寸等参数决定。具体参数见表 2。

表 2 光学系统设计的指标要求

指标项	参数值
轨道高度	100 km
刈幅宽度	$53.6 \mathrm{~km}$
地面像元分辨率 GSD	4 m
光谱范围	$0.4{\sim}1.4 \text{ m}$
CCD 像元尺寸	6 µm × 6 µm

通过焦距与地面像元分辨率、探测器像元 尺寸和轨道高度之间的关系,我们可以计算得 到:

焦距:
$$f = \frac{ 探测器像元尺寸 \times 轨道高度}{GSD}$$
$$= \frac{6 \times 100}{4} = 150 \ mm$$
(3)

刈幅宽度、轨道高度和全视场角的关系如图 1 所示。由此可计算得到光学系统的全视场角。

$$TFOV = 2\arctan(\frac{W}{2H}) = 30^{\circ}$$
 (4)

为了实现设计所需的 GSD ,要求 $\frac{GSD}{H} \ge$ $\frac{1}{2}$,所以光学系统的相对口径应大于 35 mm 。 综合考虑系统的技术指标和整体的外形尺寸, 可以确定相对孔径为 1/3 ,即系统 F 数为 3 。 最终的系统参数见表 3 。

图 1 刈幅宽度、轨道高度和全视场角的关系示意图

表 3 离轴三反光学系统的参数

指标项	参数值	
焦距 /mm	150	
入瞳直径 /mm	50	
F 数	3	
视场角/。	30×11	
波长范围 /nm	$400 \sim 1400$	

本文采用离轴三反光学系统,根据所需的 技术指标来计算出光学系统的初始结构参数, 并设定初始结构为同轴三反光学系统,然后将 同轴三反光学系统进行偏心和倾斜,得到离轴 三反光学系统,并对其进行结构优化。

设计步骤可分为以下几步: (1)利用设定的 结构参数求解反射镜的曲率半径和三面反射镜 的间距;

(2) 求解三面反射镜的偶次非球面的圆锥系数;

(3) 求解完同轴系统参数后进行偏心和倾斜,以此来消除由同轴系统引起的中心遮拦,然后利用 Zemax 进行进一步的结构和面形优化,以完善成像质量。

本 文 设 计 的 系 统 是 无 中 间 像 的 Cook-TMA, 其 F 数 为 3, 视场 角 为 30 °×11 °, 焦距为 150 mm。得到的光学系统光路和参数如 图 2 和表 4 所示。

图 2 离轴三反光学系统的仿真图

3 成像质量评价及对比分析

本文的重点在于,设计偶次非球面组成的 离轴三反光学系统后,利用自由曲面替换离轴 三反光学系统的主镜面形,并评价自由曲面在离 轴光学系统中的矫正像差的应用效果。分析比 较自由曲面和常规非球面对离轴光学系统成像 质量的提升优劣。在 Zemax 中将离轴三反光学 系统的主镜面形修改为 Zemike 多项式,将多项 式系数 (本文选定前 8 项进行优化) 设定为优化 变量,得到最终的结果,具体结果见表 5。

本文采用调制传递函数 (Modulation Transfer Function, MTF) 曲线、畸变图和点列图来评价该 离轴光学系统的成像质量。

MTF 值越大,说明该空间频率处的明暗锐 度越大,越能被清晰分辨。从图 3 中可看出,在 50 lp/mm 处,偶次非球面的全视场 MTF 值约为 0.5,而 Zernike 多项式曲面的全视场 MTF 值在 0.6 以上,可认为在离轴光学系统中,自由曲面 在提升成像性能方面比偶次非球面有更大优势。

从图 4 可以看出,该系统存在一定的畸变, 但该畸变处在系统误差范围内。

表4 离轴三反光学系统的参数

离轴三反	M1	M2	M3	
曲率半径 /mm	-1505.46301	-254.933457	-292.252032	
镜间距 /mm	-236.196637	222.031592	-233.932948	
圆锥系数	-1.915422	3.435673	0.202390	
尺寸 /mm	150×48	38×22	150×59	
Decenter X		0		
Decenter Y		34.211390		
Tilt X		1.761231		
Tilt Y		0		
系统总长 /mm		275.00		

表5 Zernike 多项式的系数值

多项式系数项	系数值
Z1	0
Z2	0
Z3	4.32e-7
Z4	9.42e-7
Z5	4.43e-5
Z6	-4.53e-6
Ζ7	-2.43e-10
Z8	4.83e-6

Zernike 多项式的系统在 +15° 视场处的最

大畸变值为 3.9683%, 而偶次非球面在 +15° 视 场处的最大畸变值为 9.6704%。 Zernike 多项式 曲面带来的畸变更小。

点列图表示像面的弥散斑。弥散斑越小,就 越接近或者小于艾里斑,系统就越完善。从图 5 中可以看出,整个离轴三反光学系统在像面上 的成像质量良好,并且 Zernike 多项式的弥散斑 比偶次非球面的小。

图 4 (a) 偶次非球面 (b) Zernike 多项式曲面对 应的畸变图

(下转第16页)