文章编号: 1672-8785(2014)07-0024-05

基于常温磁控溅射法的二氧化钒薄膜 制备方法研究

刘星星 1,2

(1. 中国科学院上海技术物理研究所,上海 200083;2. 上海节能镀膜玻璃工程技术研究中心,上海 200083)

摘 要:采用常温磁控溅射法制备金属钒薄膜,然后在合适的氧气氛围下对其进行退火 氧化处理,最终在非晶玻璃衬底上制备出具有相变的高性能二氧化钒 (Vanadium Dioxide, VO₂)薄膜。X 射线衍射 (X-Ray Diffraction, XRD)测试结果表明,所制薄膜的主要成分 为 VO₂;扫描电子显微镜 (Scanning Electron Microscope, SEM)测试结果表明,所制薄膜 的结晶性良好,晶粒粗细均匀。该薄膜在室温下的红外光透过率 (2400 nm 处)为 67%, 在高温下的红外光透过率 (2400 nm 处)为 9%。其透过率差值为 58%,因此具有良好的 红外透过率调节能力。同时还测试分析了薄膜光学转变与电学转变的差异,发现电学 转变温度比光学转变温度高 4.7 ℃。该方法适合大面积 VO₂ 薄膜的制备,对智能窗的研 究与应用具有重要意义。

关键词: 二氧化钒; 磁控溅射; 相变; 智能窗

中图分类号: O482 文献标志码: A DOI: 10.3969/j.issn.1672-8785.2014.07.006

Vanadium Dioxide Thin Film Prepared by Magnetron Sputtering at Room Temperature

LIU Xing-xing 1,2

Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, China;
Shanghai Engineering Research Center of Energy-saving Coatings, Shanghai 200083, China)

Abstract: A vanadium metal thin film is prepared by using magnetron sputtering at room temperature. Then, the film is annealed in a suitable oxide atmosphere. Finally, a high quality vanadium dioxide thin film with phase transition is prepared on an amorphous glass substrate. The X-Ray Diffraction (XRD) test result shows that the main component of the prepared film is vanadium dioxide. The Scanning Electron Microscope (SEM) test result shows that the prepared film is well crystallized and distributed. The film has its infrared transmittance of 67% at 2400 nm wavelength at room temperature and has its infrared transmittance of 9% at the same wavelength at room temperature. The transmittance difference is 58%. Therefore, it has a good infrared transmittance adjustment ability. In addition, the difference between the optical transition and the electric transition of the film is analyzed. It is found that its electric transition temperature is 4.7 $^{\circ}$ higher than its optical transition temperature. This method is suitable to prepare large area vanadium dioxide films and is of significance to the research and application

收稿日期: 2014-05-07

基金项目:上海市科委纳米科技项目 (11nm0502100; 12nm0502900);上海市科委基础重点项目 (13JC1405902);上海市科委研发平台专项 (12dz2293600);上海市特种光纤与光接入网重点实验室开放课题项目 (SKLSFO2011-03) 作者简介:刘星星 (1990-),男,江西南康人,博士研究生,主要从事氧化钒薄膜研究。E-mail: xxliu@mail.sitp.ac.cn

of smart windows.

Key words: vanadium dioxide; magnetron sputtering; phase transition; smart window

0 引言

1974年, Mott N F 等人^[1] 发现 VO₂ 在 68 ℃ 附近会发生金属 - 绝缘体转变。自此以来, VO。 已经得到了人们的广泛研究。VO。的金属 - 绝缘 体转变是一个结构相变过程。当温度低于 68 ℃ 时, VO。晶体具有单斜结构, 导电性差, 红外透 过率高;而当温度高于 68 ℃时, VO₂ 晶体具有 四方结构,导电性好,红外透过率低^[2]。由于 相变前后的光学性质和电学性质均会发生极大 变化,而且相变温度处在室温附近, VO。可以用 于非致冷红外焦平面^[3]、光学开关^[4]以及激光 防护^[5]等领域。通过掺杂可以将 VO。的相变温 度调节至室温附近^[6]。另一方面, VO₂薄膜在 低温下具有较高的红外透过率,但是其在高温 下的红外透过率却很低。所以人们可以在玻璃 衬底上沉积具有相变特性的 VO。薄膜, 然后利 用 VO。薄膜在不同温度下的红外透过率变化, 自动调整红外光的入射量以达到调节室内温度 的目的。因此, VO。薄膜是一种良好的智能窗薄 膜材料^[7-11]。

VO₂ 薄膜制备方法包括反应磁控溅射^[12]、 溶胶凝胶^[13]、离子束溅射^[14]、真空热蒸发^[15] 和脉冲激光沉积^[16]等。利用这些制备方法再配 上合适的退火过程,就可以制备出性能优良的 VO₂ 薄膜。

但是由于上述制备方法与现有的大规模键 膜工艺并不能很好地兼容,迄今为止,VO₂薄膜 制备工作还只是停留在小样制备的基础上。而 磁控溅射方法需要把衬底加热至400℃左右,这 在现有的大规模镀膜线上还无法实现。因此,人 们开始研究通过常温磁控溅射并结合氧化退火 的方法来实现VO₂薄膜的生长。潘梅等人从理 论上研究了氧含量对VO₂相变特性的影响^[17]。 徐晓峰等人^[18]通过常温磁控溅射金属钒,并采 用在大气中氧化退火的方法在宝石衬底上制备 出了 VO₂ 薄膜,同时还研究了退火时间对薄膜 成分形成的影响。Balu R 等人^[19] 通过常温磁控 溅射金属钒并结合氧化退火的方法制备出了不 同厚度的 VO₂ 薄膜。该薄膜在高温下的红外透 过率接近于 0,但是其可见光透过率却很低,因 此并不适合智能窗应用。曾富强等人^[20] 也通过 常温磁控溅射金属钒并结合氧化退火的方法在 普通玻璃衬底上制备出了 VO₂ 薄膜。但是在红 外波段中的 2400 nm 处,该薄膜在相变前后的透 过率之差只有 20%,其红外辐射调节能力不足 以满足应用需求。

我们采用国产磁控溅射镀膜系统镀制金属 钒薄膜,然后把金属钒薄膜放入大管径真空退 火炉中进行通氧退火,通过精确控制通氧流量 和氧气气压,最后在非晶玻璃衬底上制备出了 性能优异的 VO₂ 薄膜。这种制备方法的优点是 镀膜时衬底无需加热,因此与现有的大规模镀 膜工艺完全兼容。

1 实验

1.1 制备

我们采用常温磁控溅射并结合退火氧化的 方法制备 VO₂ 薄膜。具体流程是,先通过多靶 磁控溅射镀膜系统在玻璃衬底上镀制金属钒薄 膜,然后将其放入真空管式退火炉中进行退火, 生成 VO₂ 薄膜。其中,镀膜系统共有 5 个镀膜 腔和 1 个回转腔,可以放入 10 个靶,并可同时 进行多靶溅射,如图 1(a) 所示。该系统与大规模 镀膜玻璃生产线类似,其横向 200 mm 均匀性良 好,因此可以用于制备 200 mm×200 mm 的大面 积样品,并且与大规模镀膜工艺完全兼容。镀膜 系统所使用的钒靶是尺寸为 320 mm×140 mm 的 平面靶(见图 1(b)),其纯度为 99.99%;衬底为普 通浮法玻璃衬底;溅射工艺气体为氩气,其纯度 为 99.999%;系统基础真空为 1×10⁻³ Pa;溅射 时,氩气流量为 50 sccm,系统气压为 0.22 Pa,

图 1 (a) 多靶磁控溅射镀膜系统; (b) 所使用的平面靶

溅射功率为 500 W,溅射电压为 338 V。镀膜完成后,金属钒薄膜的厚度约为 50 nm。

然后把沉积在玻璃衬底上的金属钒薄膜样 品置于大管径管式退火炉中。将退火炉抽空到 1.5 Pa,然后以 20 ℃/min 的升温速率使其升温 至 530 ℃,随后进入恒温退火阶段。在恒温退火 过程中,向炉内通入流量为 20 sccm 的氧气;氧 气气压为 18 Pa,恒温 30 min。在恒温阶段结束 后,停止氧气通入,进入自然降温阶段。当温度 降至 100 ℃之后,充入空气,取出样品。

1.2 测试

通过 SEM 分析所制薄膜的表面形貌和微观 结构,并采用 XRD 法测定其结晶取向,以确定 该薄膜的成分。通过可见光谱仪和近红外光谱 仪测定薄膜的光学性质,并用 RTS-8 型四探针 测试仪测定其电学性质。其中,可见光谱仪用于 测定薄膜的室温 (20 ℃)透射谱和高温 (100 ℃) 透射谱,近红外光谱仪用于测定薄膜的变温光 谱。通过变温光谱观察 VO₂ 薄膜相变的光学热 滞回线;通过变温方块电阻观察 VO₂ 薄膜的电 学热滞回线。

2 结果与分析

为了观察在玻璃上制备的 VO₂ 薄膜的微观 结构,我们对 VO₂ 薄膜进行了 SEM 成像 (结果 见图 2)。可以看出,在放大 50000 倍之后,整个 薄膜的结晶性能良好,晶粒粗细均匀,平均晶粒 直径为 72 nm。为了确定结晶的晶粒是 VO₂,我 们对样品进行了 XRD 测试分析 (结果见图 3)。 图 3 中只有 1 个衍射峰和 1 个大包络,其中大 包络为非晶玻璃衬底的 XRD 衍射包络,因此薄 膜层只有一个衍射峰,说明薄膜在玻璃衬底上 的结晶性能良好。该衍射峰对应于 VO₂ 的 (011)

图 2 在玻璃衬底上制备的 VO₂ 薄膜的 SEM 照片

图 3 在玻璃衬底上制备的 VO2 薄膜的 XRD 图谱

峰,并且没有出现其他钒氧化物的衍射峰,说明 VO₂ 是薄膜的主要成分,且呈单一晶向。通过 XRD 分析和 SEM 分析可以得出,金属钒薄膜已 经氧化成 VO₂ 薄膜,且其结晶性能良好,晶粒 粗细均匀。

大面积 VO₂ 薄膜最主要的应用方向是智能 窗的智能控温薄膜, 通过其光学性质可以反映 出薄膜性能。当温度低于相变温度时, VO。薄膜 的红外透过率较高,可以透过红外辐射;而当温 度高于相变温度时, VO。薄膜的红外透过率会 自动变低,无法透过红外辐射。利用这一特性, VO。薄膜可以用作智能控温薄膜。低温下,薄膜 的红外透过率越高,越有利于太阳光的红外能 量进入室内,从而降低取暖耗能;当温度升高到 相变温度以上时,薄膜的红外透过率越低,越有 利于阻挡太阳光的红外能量进入室内,降低制 冷耗能,从而起到智能调节室内温度的作用。图 4 所示为 VO₂ 薄膜的高 / 低温可见光 - 近红外透 射谱。可以看出, 室温下 VO。 薄膜的红外透过率 较高,这是因为 VO2 在室温下具有单斜结构,其 能带结构与绝缘体类似,载流子浓度低,自由载 流子吸收很弱, 红外透过率高; 当温度上升并超 过相变温度之后, VO₂发生相变, 由单斜结构转 变为四方结构,其能带结构与金属类似,载流子 浓度高,自由载流子吸收强,红外透过率低。在 2400 nm 波长处, 高 / 低温透过率之差为 58%, 说明金属钒薄膜已经比较充分地转变成 VO。薄

70 60 可见区. 近红外区. 20-# Transmission (%) 50 40 58 30 20 10 100+1 0 1200 1600 2000 2400 400 800 Wavelength (nm)

图 4 在玻璃衬底上制备的 VO₂ 薄膜的室温和高温 透射光谱

膜,这与 XRD 结果及 SEM 结果吻合得较好。而 在可见光波段,薄膜的高温和低温透过率几乎 一致,可见光波段的峰值透过率为 43%。

若要应用于智能窗领域, VO₂ 在可见光波段 必须具有较高的透过率, 以便利用太阳光进行 照明。虽然也有其他研究人员制备出了红外透 过率差值接近 70% 的 VO₂ 薄膜在可见光波段的透 过率几乎为0。由于无法有效利用太阳光的可见 光能量进行采光, 这种厚度的 VO₂ 薄膜并不适 合智能窗应用。由此可见, 通过增加 VO₂ 的厚 度来提高红外透过率差值的方法对于智能窗应 用来说并不可取。而我们制备的 VO₂ 薄膜的可 见光峰值透过率可达 43%。如果再镀制合适的 减反膜, VO₂ 薄膜的可见光透过率还能得到进一 步提高, 从而更适合作为智能窗玻璃使用。

VO₂ 薄膜的红外波段调节作用对智能窗应 用至关重要。其红外透过率随温度的变化情况 可以准确地反映出各温度下太阳光的红外入射 能量。图 5 所示为 VO₂ 薄膜的热滞回线,即在 升温和降温过程中薄膜在 2000 nm 波长处的透 过率随温度的变化情况。VO₂ 薄膜从低温绝缘相 转变到高温金属相的过程中,载流子浓度在相 变温度附近发生突变,红外透过率也在此时发 生突变。VO₂ 薄膜的升温相变温度为 71.7 ℃,降 温相变温度为 55.9 ℃,因此薄膜的光学转变温 度为两者的平均值 ^[21] — 63.8 ℃。

图 5 在玻璃衬底上制备的 VO₂ 薄膜在 2000 nm 处 的光学热滞回线

VO₂薄膜不仅可以应用于智能窗领域,而 且利用其在室温附近的电阻会随温度发生剧烈 变化这一特点,还可以应用于非致冷红外焦平面 领域。图6所示为VO2薄膜的电学热滞回线。相 变前 (20 ℃时) 的薄膜方块电阻为 734 kΩ/口, 相 变后 (100 ℃时) 的薄膜方块电阻为 5 kΩ/口。相 变前后的方块电阻之间相差 2.1 个数量级, 这是 因为相变前载流子浓度低,薄膜导电性差,电阻 率高;而当温度升至相变温度后,薄膜变成 VO2 的金属相,载流子浓度增加,电阻减小。VO。的 升温相变温度为 78.7 ℃,降温相变温度为 58.4 ℃,因此其电学转变温度为68.5℃,比光学转变 温度高 4.7 ℃。VO₂ 薄膜的电学和光学转变都是 由结构相变引起的,其光学转变取决于相变晶 粒的数量,而电学转变强烈依赖于晶粒边界结 构和渗滤效应^[22,23],这是导致光学转变温度与 电学转变温度不同的本质原因。

图 6 在玻璃衬底上制备的 VO2 薄膜的电学热滞回线

3 结束语

采用常温磁控溅射法在非晶玻璃衬底上镀 制了金属钒薄膜样品,然后通过精确控制氧气氛 围将金属钒薄膜氧化成性能优异的 VO₂ 薄膜。 XRD 和 SEM 结果表明,所制薄膜在非晶玻璃 衬底上结晶良好,其主要成分是 VO₂。光学性 质测试结果表明,其室温透过率 (2400 nm 处)为 67%,高温透过率 (2400 nm 处)为 9%,透过率 差值为 58%,充分说明所制薄膜的主要成分为 VO₂。其电学转变温度为 68.5 ℃,光学转变温度 为 63.8 ℃,两者之差为 4.7 ℃。这是因为电学性 质不仅跟晶粒内部有关,而且还与晶粒边界的相 互作用有关。此外,基于常温磁控溅射法的 VO₂ 薄膜制备方法还与工业化生产方式相兼容,可 以推广到智能窗生产领域。

参考文献

- Mott N F, Friedman L. Metal-insulator transitions in VO₂, TiO₂ and Ti_{2-x}V_xO₃ [J]. *Philosophical Mag*azine, 1974, **30**(2): 389–402.
- [2] Zylbersztejn A, Mott N F. Metal-insulator Transition in Vanadium Dioxide [J]. *Physical Review B*, 1974, **11**(11): 4383–4395.
- [3] Chen C H, Yi X J, Zhang J, et al. Micromachined Uncooled IR Bolometer Linear Array Using VO₂ Thin Films [J]. International Journal of Infrared and Millimeter Waves, 2001, 22(1): 53–58.
- [4] Soltani M, Chaker M, Haddad E, et al. 1×2 Optical Switch Devices Based on Semiconductor-tometallic Phase Transition Characteristics of VO₂ Smart Coatings [J]. Measurement Science and Technology, 2006, 17(5): 1052–1056.
- [5] Chen S H, Ma H, Yi X J, et al. Smart VO₂ Thin Film for Protection of Sensitive Infrared Detectors from Strong Laser Radiation [J]. Sensors and Actuators A, 2004, **115**: 28–31.
- [6] Pan M, Zhong H M, Wang S W, et al. First-principle Study on the Chromium Doping Effect on the Crystal Structure of Metallic VO₂ [J]. Chemical Physics Letters, 2004, **398**(4–6): 304–307.
- [7] Kato K, Song P K, Odaka H, et al. Study on Thermochromic VO₂ Films Grown on ZnO-coated Glass Substrates for "Smart Windows" [J]. Japanese Journal of Applied Physics, 2003, 42(10): 6523–6531.
- [8] Jin P, Xu G, Tazawa M, et al. Design, Formation and Characterization of a Novel Multifunctional Window with VO₂ and TiO₂ Coatings [J]. Applied Physics A, 2003, 77: 455–459.
- [9] 史昊杨,朱群志,王文婷,等.二氧化钒镀膜玻璃参数 测量和模拟[J].建筑与环境工程,2012,34:239-245.
- [10] 罗宏杰,高彦峰.二氧化钒智能节能材料的溶液 法制备和光学性能 [J]. 中国材料进展, 2009, 28(1): 38-42.
- [11] Takahashi I, Hibino M, Kudo T. Thermochromic Properties of Double-doped VO₂ Thin Films Prepared by a Wet Coating Method Using Polyvanadate-based Sols Containing W and Mo or W and Ti [J]. Japanese Journal of Applied Physics, 2001, 40(3): 1391–1395.

(下转第43页)