文章编号: 1672-8785(2013)08-0013-05

用于红外激光防护的VO2薄膜的研究进展

周 矗 李合琴 刘心同

(合肥工业大学材料科学与工程学院,安徽合肥 230009)

摘 要: 二氧化钒(VO₂)薄膜由于具有优异的热致变色性能已成为激光防护材料领域的研究热点。本文综述了国内外 VO₂ 薄膜的研究进展,对 VO₂ 薄膜的主要制备方法、用于红外激光防护的原理及防护波段进行了探讨,并总结了用 VO₂ 薄膜实现激光防护所面临的问题。

关键词: VO2 薄膜; 热致变色; 红外; 激光防护

中图分类号: TB43 文献标识码: A DOI: 10.3969/j.issn.1672-8785.2013.11.003

Progress of VO₂ Thin Films Used in Infrared Laser Protection

ZHOU Chu, LI He-qin, LIU Xin-tong

(School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China)

Abstract: VO_2 thin films have been a research hotspot in the field of laser protection materials because of their excellent thermochromic properties. The research progress of VO_2 thin films at home and abroad is overviewed. The main material preparation methods, principle of infrared laser protection and protection waveband of VO_2 thin films are discussed. Finally, some challenges which will be faced in this field in the future are summarized.

Key words: VO₂ thin film; thermochromic; infrared; laser protection

0 引言

自 1960 年激光问世以来,激光技术的应用 领域不断扩大。大能量、高功率、短脉冲激光器 日益增多,激光对人眼的伤害和对光学设备的 破坏性也在增大,因此有关激光防护材料的研究 受到了人们的广泛重视。根据输出激光的波长 范围,激光器可分为远红外激光器(25 μm~1000 μm)、中红外激光器(2.5 μm~25 μm)、近红外 激光器(0.75 μm~2.5 μm)、可见激光器(4000 Å~7000 Å 或 0.4 μm~0.7 μm)、近紫外激光器 (2000 Å~4000 Å)、真空紫外激光器(50Å~2000 Å)和 X射线激光器。

人们希望找到一种具有宽防护带宽、低输 出阈值、对弱辐射有很高线性透过率以及纳秒 级响应时间的激光防护材料。这种材料能直接对 入射激光强度产生响应,克服干扰激光波长的不 利因素,在不影响光学系统工作波段的光透射 要求下对入射激光进行有效的防御。 VO₂ 作为 一种热致相变材料,在从低温半导体态相变到高 温金属态的过程中伴有明显的光学和电学性能 变化,相变高速且可逆。相变温度为 Tc=68°C,

收稿日期: 2013-10-08

基金项目:国家"973"项目(2008CB717802);安徽省自然科学基金(090414182);安徽省高校自然科学基金 (KJ2009A091,KJ2012A228);合肥工业大学2013年大学生创新性实验计划项目基金资助(2013CXSY145) 作者简介:周矗(1990-),男,安徽六安人,硕士生,主要从事功能薄膜与锂硫电池的研究。 E-mail:zhouchu1212@126.com 通讯作者:李合琴 E-mail:lhqjs@hfut.edu.cn 响应时间为 10⁻¹¹s,迟滞时间为 1.3×10⁻⁹s。在 红外波段, VO₂ 具有优异的光学突变性能,因 而可作为红外激光防护材料。

1 VO2 薄膜的主要制备方法

1.1 磁控溅射法

磁控溅射法具有附着性好、密度高以及可 控性和重复性好等优点。一般以纯度很高的 V 或 V₂O₅ 为靶材, 通入氩气和少量氧气进行反应 溅射,便可制备出成分为 VO_x 的薄膜。然后在 惰性气体气氛中对其进行退火,便可获得纯度 较高的 VO₂ 薄膜^[1,2]。目前,为了降低 VO₂ 薄 膜的相变温度,人们是通过采用双靶共溅射方 法用金属元素对氧化钒进行掺杂的。

1.2 溶胶 - 凝胶法

溶胶 - 凝胶法(Sol-Gel)分为无机溶胶 - 凝胶法和有机溶胶 - 凝胶法两类。该工艺具有制品均匀性好、化学计量比易于控制、纯度高和制备过程简单等优点。无机 Sol-Gel法能较好地解决原料问题,但在热处理阶段膜面容易起泡,而且工艺参数不易控制^[3]。有机 Sol-Gel 法容易掺杂,因而容易改善 VO₂ 薄膜的性能和调节相变温度,但制备过程复杂,前驱体造价高,且涂膜需要在干燥无水的条件下进行。

1.3 真空蒸镀法

真空蒸镀法用电子束等方法加热靶材,使 其蒸发沉积在金属、半导体、绝缘体的表面以形 成薄膜,薄膜生长会受衬底与蒸发源间的距离、 蒸发源的温度影响。此方法沉积速度快,在工业 上用途很广。吴 淼 等^[4]利用真空蒸镀法制备得 到了颜色均一、薄膜致密、结晶性良好的单相热 致变色 VO₂ 薄膜。

1.4 化学气相沉积法

化学气相沉积法是利用气态或蒸汽态物质 在气相或气固界面上发生化学反应、生成固态 沉积物的方法。通常采用常压化学气相沉积法^[5] 和低压金属有机化合物气相沉积法。现阶段,该 工艺的发展趋势是通过化学气相掺杂反应来制 备相变温度接近室温的 VO₂ 薄膜。

1.1 脉冲激光沉积法

脉冲激光沉积法将脉冲激光器所产生的高 功率脉冲光束聚焦于靶材表面,使靶材气化后 沉积在衬底上形成薄膜。此方法可制备组分复杂 的薄膜材料,具有组分容易控制、生长速率快等 优点。

1.6 物理、化学混合法

物理混合法即^[6,7] 在高分子涂料中添加纯的 VO₂ 粉末,再进行机械性混合成膜。该方法主要用于制备 VO₂ 控温涂料。Shi 等^[7] 用掺钨 VO₂ 与丙烯酸树脂混合,制得了在室温附近具有一定热致变色性能的复合涂层。

化学共混即 VO₂ 与混合物在混合过程中发 生反应生成新相。相对物理混合,化学共混法得 到的薄膜结构稳定,粘附性、均匀度和光电性能 更佳,如 VO₂ 与 $ZrO_2^{[8]}$ 、SiO₂^[9] 共混得到的薄 膜相对纯的 VO₂ 在可见光波段的透过率有了显 著提高。但 VO₂ 与 TiO₂ 共混的效果却相反,这 是因为掺入的 TiO₂ 会引入更多的自由载流子, 导致光透过率降低和相变前后红外透过率的变 化变小^[10]。

2 VO2 薄膜防护红外激光的原理

常温下 VO₂ 具有单斜结构, 呈半导体态, 禁 带宽度为 0.7eV, 截止波长 λ 约为 1.8 μm, 具有 较高的光透过率。当吸收的光能使温度升高至 相变温度时, VO₂ 薄膜会在纳秒级时间内发生 突变, 从导体相迅速转变成金属相^[11],内部的 V-V 共价键变为金属键,自由电子急剧增强, 光 学特性发生明显的变化。自由电子对光的吸收会 导致红外波段的光透过率降低,使得光谱特性 由高透射变为高反射。图 1 为金红石与单斜结构 的 VO₂ 的示意图。

图 1 金红石与单斜结构的 VO₂ 的示意图 (a) 金红石相 (b) 单斜相

图 2 为 VO₂ 薄膜在低温 20 °C 和高温 80 °C 时的光谱透过曲线^[12]。由图可知,在室温 20 °C 和高温 80 °C 时, VO₂ 薄膜的光谱透过率在可见 光区(380 nm< λ <760 nm)差别不大。但在红 外光区域(λ >760 nm), 80°C 相变后的 VO₂ 薄 膜的红外光透过率明显降低,特别是在 λ >2500 nm 时,红外光基本不能透过。因此 VO₂ 薄膜就 可以在 80°C 时阻挡此波段的红外激光。

图 2 20°C 和 80 °C 时 VO2 薄膜的透射光谱

3 VO2 薄膜对激光的防护波段探讨

3.1 VO₂ 薄膜相变响应时间分析

光电探测器存在一个能量密度阈值。当激 光能量高于阈值时,探测器将受到永久性的破 坏。不同的光电探测器有不同的破坏阈值,不同 脉宽激光的破坏阈值也不相同。作为激光智能 防护材料, VO₂ 薄膜必须在强激光对探测器造 成破坏前完成相变。 VO₂ 薄膜发生相变需要吸 收的激光能量 E_{ab} 为

$$E_{ab} = C(T_p - T_a) \tag{1}$$

式中, C为 VO₂ 薄膜的热容量, T_p为 VO₂ 薄膜的相变温度, T_a为薄膜的环境温度。对于同 一 VO₂ 薄膜, 温差(T_p-T_a)越小, E_{ab} 值就越 小,相变的响应就越快。薄膜发生相变所需要的 输入门限 E_{fth} 与激光波长的关系为

$$E_{fth} = E_{ab}/A(\lambda)[1 - R(\lambda)]$$
(2)

式中, A(λ) 为薄膜对辐射激光的吸收率, R(λ) 为薄膜的反射率。

由式(2)可知,薄膜对不同波长的激光的 吸收率不同。若输入门限 E_{fth} 太高,响应时间太 长,则在相变发生之前,输入的激光能量已经超 过光电探测器的破坏阈值, VO₂薄膜就起不到 防护作用。因此, VO₂薄膜必须在激光对探测 器破坏之前完成相变。

3.2 VO₂ 薄膜的激光防护波段

VO₂ 薄膜作为红外激光防护材料有两个突 出的优点: (1)当光电传感器的工作波长与激 光波长相同时, VO₂ 薄膜会允许弱光透过,阻止 强光破坏,因而能兼顾抗激光致盲与接受信号两 种功能; (2)在高温和低温两种状态下,薄膜对 $\lambda < 1.8 \ \mu m$ 的激光均呈低透射状态;对 $\lambda > 1.8 \ \mu m$ 的激光,在薄膜发生相变后也呈低透射。VO₂的 防护波段可以从 UV 区域覆盖到中红外区域,防 护带宽较宽。基于非线性光学原理, VO₂ 薄膜 克服了防护材料与激光波长相关的不利因素, 特别是对于 $3 \ \mu m \sim 5 \ \mu m$ 和 $8 \ \mu m \sim 12 \ \mu m$ 波段的 红外探测器来说,在不影响光学系统的工作波 段光透射要求下,可对来袭的强激光进行有效 的防御。

4 实现激光防护面临的问题

具有最佳膜系结构和良好制备工艺的 VO₂ 薄膜,在半导体和金属两态时对中红外光的透 射率可分别达到 85% 和 1%,而对强激光的衰减 则可达到 100 倍以上^[13]。但要真正实现 VO₂ 薄 膜的智能激光防护功能,还需要解决以下几个问 题:

(1)降低 VO₂ 薄膜的相变温度,减少 VO₂ 薄膜的响应时间;

(2)提高 VO2 薄膜的可见光透过率;

(3)保证 VO₂ 薄膜相变前后透过红外光的跃迁幅度;

(4) VO₂ 在钒的氧化体系中并不是很稳定的相,是不饱和价态的氧化物。如何制备具有稳定相的 VO₂ 薄膜,是其能否广泛应用的关键问题。

15

5 国内外研究现状

对于 λ >1.8 μm 的激光, VO₂ 薄膜的响应时 间太长。在相变发生之前,输入的激光能量已经 超过光探测器的破坏门限,因而起不到防护作 用。解决方法是降低 VO₂ 薄膜的相变温度^[14]。 通常用 Nb、 Mo、 W 等元素来对 VO₂ 薄膜进 行掺杂,每 1% 的原子掺杂能分别降低 11°C、 11°C、 28°C 的相温度^[15,16]。近几年的文献一 方面对 W^[17,18]、 Cr^[19,20]等常用元素的掺杂进 行了深入研究,另一方面通过掺入不常用元素如 Ti^[21,22]、 N^[23]、 Ce^[24]等以改善 VO₂ 薄膜的光 学、电学性能等。但随着相变温度的降低, VO₂ 薄膜相变前后的光透过率也相应地降低,红外光 透过率的变化幅度显著减小。因此,掺杂过程中 需要针对性地进行适当的掺杂,在保证 VO₂ 薄 膜有较大相变跃迁幅度的同时降低相变温度。

国内对于 VO₂ 激光防护性能的研究,除了 有关降低相变温度的研究外,还涉及可见光、 红外光透过率^[25,26] 的问题以及通过制备多层 膜结构的 VO₂ 实现光学减反的研究,如制备 TiO₂/VO₂^[27-29]、Pt/VO₂^[30]、PcNi/VO₂^[31]、 ZrO₂/VO₂^[12]等多层膜结构。

Wu J^[32] 等人采用溶胶凝胶方法制备的 VO₂ 薄膜相变前后对 λ=4.3 μm 的红外光透过率相 差 73%, 红外相对透过率达 97.6%。 Xu Y.J. 等 ^[33] 用溶胶凝胶法得到了相变温度为 35°C、红 外透过率约为 70%、相变前后透过率相差 55% 的 Mo 、 W 共掺杂 VO₂ 薄 膜。 Huang Z L 等 [34] 利用直流磁控溅射法及快速退火工艺制得相 变温度为 42°C 的 VO₂ 薄膜。 Jin P 等人 ^[35] 采 用优化磁控溅射制备工艺在玻璃基底上制备出 了 TiO₂/VO₂/TiO₂ 夹层式薄膜结构,如图 3 所 示。这种结构不仅使 VO2 对可见光的透过率从 30.9% 提高到了 57.6%, 而且表现出了良好的热 致变色性能, VO₂ 的相变温度降低到了 58.5°C 左右。 Wang B Q 等^[36] 采用反应离子束溅射方 法在 Al₂O₃ 基片上获得了相变温度为 25°C~32 °C的VO2薄膜。朱慧群等^[37]用直流磁控溅射法

与空气热氧化退火工艺相结合,制备了相变温度约为39°C的VO2准单晶相薄膜。该薄膜对可见光的透射率约为53%。刘涛等^[38]用直流磁控溅射法在玻璃基片上制得TiO2/W掺杂VO2薄膜,相变温度降低至35°C,对可见光的透过率较高,相变前后在波数4000 cm⁻¹处的红外相对透过率为64.6%。梁继然等^[39]在Si₃N₄/SiO₂/Si 基底上利用双离子束溅射法沉积VO2薄膜,透射率对比因子超过0.99,高温关闭状态下透射率接近0。Kim^[40]等利用射频磁控溅射法和化学气相沉积法制备了VO₂/石墨烯薄膜。该薄膜对2500 nm 近红外光的开关效率为53%,很好的机械灵活性能为VO₂薄膜的规模生产及实际应用提供了保障。

图 3 TiO₂/VO₂/TiO₂ 夹层式薄膜结构的示意图

6 结束语

自 20 世纪 50 年代末 Morin 发现 VO₂ 的热 致变色特性以来,人们对 VO₂ 薄膜的研究已经 取得了一定进展,但在智能激光防护方面尚未能 取得实用性的成果。我国目前对以氧化钒为基 的化合物半导体的研究尚处于初级阶段。要使 VO₂ 在激光防护领域更有效地应用,今后的研究 工作应该集中在以下三个方面:

(1)优化 VO₂ 薄膜的制备工艺及参数,寻 找质量好、重复性高、成本低的薄膜制备方法, 为薄膜的产业化和实际应用提供保障。

(2)寻找最佳的掺杂元素、掺杂浓度及合理的掺杂工艺,降低 VO₂ 薄膜的相变温度,使 得薄膜的相变响应时间处在安全范围内,保证薄 膜的相变跃迁幅度较大。

(3)基于 VO₂ 薄膜相变过程中的优异光 电特性,对 VO₂ 进行膜系的选择和设计,以保 证薄膜的可见光透过率,实现智能激光防护。

参考文献

- [1] 聂竹华,李合琴,储汉奇,等.磁控溅射工艺对 VO_x 薄膜结构和性能的影响[J].**红外**,2010,**31**(9):9-13.
- [2] 邵林飞,李合琴,范文宾,等. VO2 薄膜的制备、电阻 温度特性及结构研究 [J].**红外**,2009,**30**(11):30–34.
- [3] 葛振华,赵昆渝,李智东,等. VO₂ 薄膜制备及掺 杂研究进展 [J].电工材料,2008(4):38-41.
- [4] 吴淼, 胡明, 张之圣, 等. 真空蒸发法制备氧化钒 薄膜的研究 [J].**硅酸盐通报**,2005(1):17-19.
- [5] Louloudakis D, Vernardou D, Spanakis E, et al. Thermochromic Vanadium Oxide Coatings Grown by APCVD Atlow Temperatures [J]. Physics Proceedia, 2013, 46:137–141.
- [6] Karimov K S, Abid M, Mahroof–Tahir M, et al. V₂O₄–PEPC Composite Based Pressuresensor[J].MicroelectronEng, 2011, 88(6):1037–1041.
- [7] Shi J Q,Zhou S X,You B,et al.Preparation and Thermochromic Property of Tungsten-doped Vanadium Dioxide Particles[J].Solar Energy Materials and Solar Cells,2007,91(19):1856–1862.
- [8] Du J, Gao Y F, Luo H J,et al. Formation and Metal-to-insulator Transition Properties of VO₂-ZrV₂O₇ Composite Filmsby Polymer-assisted Deposition[J].Solar Energy Materials and Solar Cells, 2011, 95(7):1604-1609.
- [9] Ibisate M,Golmayo D,Lopez C.Vanadium Dioxide Thermochromic Opals Grown by Chemical Vapour Deposition[J].Journal of Optics A: Pure and Applied Optics, 2008,10(12): 125202–125207.
- [10] Kakiuchida H, Jin P, Okada M, et al. Optical Characterization of Titanium-vanadium Oxide Films[J].Japanese Journal of Applied Physics, 2007, 46(2):621–626.
- [11] 雷德铭,何山. VO2 纳米粉体与纳米晶功能陶瓷的 制备与特性 [J].哈尔滨理工大学学报,2002,7(6):72-74.
- [12] Xu G,Jin P,Tazawa M,et al.Optimization of Antireflection Coating for VO₂-based Energy Efficient Window [J].Solar Energy Materials and Solar Cells,2004,83 (1): 29–37.
- [13] 宁永刚,孙晓泉. 二氧化钒薄膜在激光防护上的应 用研究 [J].**红外与激光工程**,2005,**34**(5):530–534.
- [14] Zha Z Z, Zhang Y D. Laser Protection with VO₂ Film[J]. Journal of Harbin Institute of Technology, 1997, 4(4):86–89.
- [15] 陈长琦,朱武,干蜀毅,等.二氧化钒薄膜制备及其 相变机理研究 [J].真空科学与技术,2001,21(6):452– 456.
- [16] Cavanna E,Segaud J P,et al.Optical Switching of Au Doped VO₂ Sol–gel Films[J].Materials Research Bulletin, 1999, **34**(2): 167–177.

- [17] Booth J M, Casey P S. Anisotropic Structure Deformation Inthe VO₂ Metal-insulator Transition[J]. *Physical Review Letters*, 2009, **103**(8):086402.
- [18] Huang Z L,Chen C H,Lv C H,et al.Tungsten-doped Vanadium Dioxide Thin Flms on Borosilicate Glass for Smart Window Application[J].Journal of Alloys and Compounds, 2013, 564:158–161.
- [19] Piper L F J, Demasi A, Cho S W, et al. Soft X-ray Spectroscopic Study of Theferromagnetic Insulator V_{0.82}Cr_{0.18}O₂[J].*Physical Review B*, 2010, 82(23):235103.
- [20] Brown B L,Lee M,Clem P G,et al. Electrical and Optical Characterization of the Metal-insulator Transition temperature in Cr-doped VO₂ Thin Films[J]. *Journal of Applied Physics*,2013,113(17):173704.
- [21] Nishikawa M,Nakajima T,Manabe T,et al. High Temperature Coefficients of Resistance of VO₂ Films Grown by Excimer–laser–assisted Metal Organic Deposition Process Forbolometer Application [J].Materials Letters, 2010, **64**(17): 1921–1924.
- [22] Nishikawa M, Nakajima T, Manabe T, et al. Tidoped VO₂ Films Grown on Glass Substrates by Excirner-laser-assisted Metal Organic Deposition Process[J]. Japanese Journal of Applied Physics, 2011, 50(1):OIBE04.
- [23] 陈金民,黄志良,刘羽.退火工艺对微波等离子制备氮 杂二氧化钒的影响 [J].半导体光电,2009,30(6):888.
- [24] Song L W, Zhang Y B, Huang W X, et al. Preparation and Thermochromic Properties of Ce–doped VO₂ Films[J].*Materials Research Bulletin*, 2013, 48(6):2268–2271.
- [25] 吕晓庆,李合琴,周矗,等. TiO₂/VO₂ 双层薄膜的制备及光电性能研究 [J].合肥工业大学学报:自然科学版,2012,35(12):1659–1661.
- [26] 沈楠,李毅,易建新.纳米 VO2 薄膜的制备 及其可见光透过率的改善[J].**红外与毫米波学** 报,2006,25(3):199-202.
- [27] Mlyuka N R, Niklasson G A, Granqvis C G. Thermochromic mutilayer films of VO₂ and TiO₂ with enhanced transmittance[J].Solar Energy Materials and Solar Cells, 2009, **93**(9): 1685–1687.
- [28] Wang H Y,He W J,Yuan G L,et al.Large Change of Visible Transmittance with VO₂ Phase Transition in VO₂/TiO₂ Polycrystalline Films[J].*Thin* Solid Films,2013,540:168–172.
- [29] Li Y M, Ji S D, Gao Y F, et al. Modification of Mott Phase Transition Characteristics in VO₂/TiO₂ Core/Shell Nanostructures by Misfit-strained Heteroepitaxy[J].ACS Applied Materials & Interfaces, 2013, 5:6603-6614.

(下转第42页)

INFRARED (MONTHLY)/VOL.34, NO.11, NOV 2013