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Abstract; Short-wave infrared (SWIR) imaging technology has broad application prospects in industry, medi-

cine, and consumer electronics. However, traditional detectors such as indium gallium arsenide (InGaAs) are

limited by high cost, limited spectral response range, and the difficulty in balancing high resolution and minia-
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turization, hindering their large-scale application. Colloidal quantum dots, a class of solution-processable low-

dimensional semiconductor nanomaterials, possess unique quantum confinement effects that enable precise

spectral tuning in the 1. 0-3.0 pm wavelength range. They exhibit good compatibility with complementary

metal-oxide-semiconductor (CMOS) processes and flexible substrates, opening a new path for the development

of low-cost, high-performance SWIR detection technology. This paper systematically reviews the working

principle, performance parameters, and latest research progress of quantum dot SWIR detectors both domesti-

cally and internationally. It focuses on their application potential in areas such as material defect detection,

semiconductor monitoring, agricultural and food analysis, biomedical imaging, and mobile device integration,

and also provides an outlook on future technological development and industrialization challenges.

Key words: infrared detector; short-wave infrared imaging; colloidal quantum dot; complementary metal-ox-

ide-semiconductor integration
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