文章编号: 1672-8785(2023)01-0011-06

InSb 晶片的显微拉曼研究

柏 伟 金 研 李 乾 董 涛 折伟林 (华北光电技术研究所,北京 100015)

摘 要:对热处理前后的 InSb 晶片进行了显微拉曼面扫描测试,开发了一种新的 InSb 晶片应力面分布表征方式。热处理前后 InSb 晶片的横向光学(Transverse Optical, TO)声子散射峰分别位于 179.3 cm⁻¹和 178.5 cm⁻¹;纵向光学(Longitudinal Optical, LO)声子散射峰分别位于 188.8 cm⁻¹和 188.7 cm⁻¹;特征峰的半峰宽分别为 5.8 cm⁻¹和 5.0 cm⁻¹。X 射线双晶衍射曲线半峰宽值分别为 12.10~20.04 arcsec 和 7.61~7.74 arcsec。用经热处理后的晶片制得的器件在 80℃烘烤20 天后, 盲元增加量较小,整体数量较少。这表明热处理释放了晶片的残余应力,对后期抑制器件新增盲元存在有利影响,为新一代超高性能、超大面阵红外探测器的制备奠定了材料基础。

关键词: 锑化铟; 显微拉曼; 热处理; 应力; 晶体质量

中图分类号: TN213 文献标志码: A DOI: 10.3969/j.issn.1672-8785.2023.01.002

Micro-Raman Study of InSb Wafers

BAI Wei, JIN Yan, LI Qian, DONG Tao, SHE Wei-Iin

(North China Research Institute of Electro-Optics, Beijing 100015, China)

Abstract: The micro Raman scanning test was carried out on InSb wafer before and after heat treatment. A new characterization method of stress surface distribution of InSb wafer was developed. The transverse optical (TO) phonon scattering peaks of InSb before and after heat treatment are 179.3 cm⁻¹ and 178.5 cm⁻¹, respectively. The longitudinal optical (LO) phonon scattering peaks of are 188.8 cm⁻¹ and 188.7 cm⁻¹, respectively. The half-peak widths of characteristic peaks are 5.8 cm⁻¹ and 5.0 cm⁻¹, respectively. The half-peak widths of characteristic peaks are 5.8 cm⁻¹ and 5.0 cm⁻¹, respectively. For devices made of heat-treated InSb wafers, the increment of blind element is less after baking at 80°C for 20 days, and the overall quantity is small. This indicates that the heat treatment releases the residual stress of the wafer, which has a favorable effect on the new blind pixel in the late suppression device, and lays a material foundation for the preparation of a new generation of infrared detector with ultra-high performance and ultra-large size.

Key words: InSb; micro-Raman; heat treatment; stress; crystal quality

收稿日期: 2022-09-19

E-mail: nwpubaiwei@163.com

作者简介:柏伟(1990-),男,山东济南人,硕士,主要研究方向为红外晶体材料与器件制备。

0 引言

锑化铟(InSb)晶体是一种物理化学性质稳 定的 III-V 族化合物半导体材料,其禁带宽度 极窄、电子有效质量极小、电子迁移率极 高[1],所以被广泛应用于霍尔器件、磁阻元件 和红外探测等领域[2]。特别值得关注的是, InSb在 3~5 µm 中波红外波段为本征吸收,基 于 InSb 的红外探测器拥有极高的量子效率和 响应率^[3],因此 InSb 晶体成为了制备中波红 外探测器的首选材料^[4]。InSb 红外探测器历经 多年发展,技术迭代升级,阵列规模不断变 大,像素尺寸不断减小,目前更是向集成化、 智能化方向发展[5-6],有力促进了红外探测技 术在辅助驾驶、消防安全、跟踪搜索、监视侦 察、光电对抗和天文观测等领域的应用[7-10]。 随着未来新一代超大规格、超高性能红外探测 器的应用发展,人们对高质量 InSb 晶片的需 求愈发迫切[11]。

InSb 晶片的制备包括多晶区熔提纯、晶体生长、晶体切割、晶片研磨、晶片抛光和 清洗等。由于处在高温生长环境中,生长态 晶体内部会不可避免地产生热应力^[12],晶 片的加工也会引入机械加工应力。因此,本 文开展 InSb 晶片热处理及显微拉曼研究, 用以表征应力分布,指导晶片质量提升,为 新一代超高性能超大面阵红外探测器的制备 奠定材料基础。

1 实验和测试

1.1 InSb 晶体生长

高纯原材料通过区域熔炼提纯制备出 InSb多晶。检测合格的 InSb 多晶经表面处理 后进行 InSb 晶体生长。InSb 晶体生长采用直 拉法。

1.2 InSb 晶片加工

InSb 晶体生长完成后进行定向切割、晶 片割圆倒角、晶片双面研磨、抛光及清洗等, 制得待热处理的 InSb 晶片。

1.3 InSb 晶片热处理

首先对待热处理的 InSb 晶片进行元素含 量测试。依据测试结果、热处理石英管体积以 及待补偿元素饱和蒸汽压等,对其进行相应温 度下的元素补偿,最后按照热处理温度曲线进 行 InSb 晶片高温热处理。

2 结果与讨论

对热处理前后的 InSb 晶片分别进行显微 拉曼和高分辨 X 射线衍射无损测试。对热处理 后的晶片最终进行了器件制备,用以验证高温 热处理效果。

2.1 显微拉曼光谱测试

利用英国雷尼绍公司生产的 inVia 显微拉 曼光谱仪对 InSb 晶片进行显微拉曼光谱测试 (激发波长为 532 nm)。高温热处理前后 InSb 晶片的显微拉曼光谱图如图 1 所示。

图 1 高温热处理前后 InSb 晶片的拉曼光谱图

InSb属于极化晶体,其闪锌矿型晶体结构 无反演对称性,形成了图1所示的双简并横向 光学声子 TO模和纵向光学声子 LO模的显微 拉曼光谱图^[13-14]。TO声子散射峰作为特征峰, 其强度远强于 LO声子散射峰。InSb 晶片高温 热处理前,横向光学 TO声子散射峰和纵向光 学 LO 声子散射峰分别位于 179.3 cm⁻¹和 188.8 cm⁻¹;高温热处理后,横向光学 TO声 子散射峰和纵向光学 LO 声子散射峰分别位于 178.5 cm⁻¹和 188.7 cm⁻¹。可以看出,相较于 高温热处理前,高温热处理后 InSb 晶片的 TO 声子散射峰和 LO 声子散射峰均发生了"红 移",且 TO 声子散射峰作为特征峰,"红移" 更加明显。究其原因,可能是晶格变化导致对 应峰的化学键发生变化。TO 声子散射峰作为 特征峰,其半峰宽的大小可用来表征 InSb 材 料的晶体质量。高温热处理前后 InSb 晶片的 特征散射峰的半峰宽分别为 5.8 cm⁻¹和 5.0 cm⁻¹。可以看出,高温热处理后其半峰宽降 低,表明晶片的晶格质量较佳。

2.2 显微拉曼面扫描测试

利用 inVia 显微拉曼光谱仪对 InSb 晶片进 行显微拉曼面扫描测试。激发波长为 532 nm, 微区尺寸为 200 μm×200 μm, 微区曝光时间为 0.3 s。高温热处理前后 InSb 晶片的显微拉曼 面扫描 TO 声子散射峰峰位及半峰宽面分布如 图 2 和图 3 所示。

(a)高温热处理前

(b)高温热处理后

图 2 高温热处理前后 InSb 晶片的显微拉曼面扫描 TO 声子散射峰峰位面分布图

(a) 高温热处理前(b) 高温热处理后图 3 高温热处理前后 InSb 晶片的显微拉曼面扫描 TO 声子散射峰半峰宽面分布图

由图 2 可以看出,热处理前 InSb 晶片的 显微拉曼面扫描 TO 声子散射峰峰位面分布存 在明显不均匀区, 散射峰峰位分布在 178.9~ 179.5 cm⁻¹范围内; 热处理后 InSb 晶片的显 微拉曼面扫描 TO 声子散射峰峰位面分布整体 均匀而无明显差异,散射峰峰位分布在178.2 ~178.8 cm⁻¹范围内。热处理前 InSb 晶片的 显微拉曼面扫描 TO 声子散射峰半峰宽面分布 也存在明显不均匀区,半峰宽分布在3.8~6.3 cm⁻¹范围内; 热处理后 InSb 晶片的显微拉曼 面扫描 TO 声子散射峰半峰宽面分布整体均匀 而无明显差异,半峰宽分布在 3.5~5.3 cm⁻¹ 范围内。相较于热处理前,热处理后 InSb 晶 片的显微拉曼面扫描 TO 声子散射峰峰位及半 峰宽面分布整体均匀,半峰宽减小,表明晶片 的晶格质量较佳,均一性更好。

2.3 晶格质量测试

利用荷兰 PANalytical X 射线衍射仪对 InSb 晶片进行高分辨 X 射线双晶衍射测试。 测试区域为晶片中心一点和边缘四点,每片 晶片共测试 5 个点。高温热处理前后 InSb 晶 片的高分辨 X 射线衍射曲线如图 4 所示,半 峰宽值统计结果如表 1 所示。可以看出,热 处理前后 InSb 晶片的高分辨 X 射线双晶衍射曲 线的半峰宽值分别约为 12.10~20.04 arcsec 和 7.61~7.74 arcsec, 经热处理后 InSb 晶片的 高分辨 X 射线双晶衍射曲线半峰宽明显减 小。X 射线双晶衍射作为研究晶体结构的重 要方法,因对晶格损伤和晶格畸变等有很高 的响应度和灵敏度,其半峰宽成为评价晶体 质量的有效手段和重要参数。相较于热处理 前,热处理后 InSb 晶片的高分辨 X 射线双晶 衍射曲线峰型尖锐、半峰宽减小,表明热处 理优化了生长态晶体的热应力和晶片机械加 工应力,释放了残余应力,提升了晶格质量。

2.4 器件盲元测试

选用同一根晶体,同时对相邻处未经热处 理的晶片和经热处理后的晶片进行器件制备, 然后开展 80℃下 20 天低温烘烤实验,以验证 器件的稳定性能。低温烘烤前后器件的盲元分 布测试图如图 5 所示,盲元数量及变化统计结 果如表 2 所示。

可以看出,用未经热处理的 InSb 晶片和 经热处理后的 InSb 晶片制备的器件在低温烘 烤前的原始状态下,盲元数量相当;在 80℃ 下 20 天低温烘烤后出现明显差异,用经热处 理后的 InSb 晶片制得器件的盲元增加量较小, 整体数量较少,说明热处理释放了晶片内部残 余应力,对后期抑制器件新增盲元存在有利 影响。

		热处理前						
	1#	2#	3#	1#	2#	3#		
点 1/arcsec	13.06	20.73	26.44	7.84	7.96	7.52		
点 2/arcsec	11.85	18.16	22.88	7.69	7.65	7.27		
点 3/arcsec	12.33	17.64	20.16	7.69	7.62	7.24		
点 4/arcsec	13.14	12.54	15.67	7.65	7.20	8.70		
点 5/arcsec	10.13	14.91	15.07	7.64	7.62	7.97		
平均/arcsec	12.10	16.79	20.04	7.70	7.61	7.74		

表1 高温热处理前后 InSb 晶片的晶格质量测试

表 2 80℃低温烘烤 20 天前后器件的盲元数量变化对比

	烘烤前			烘烤后		
	1#	2#	3 #	1#	2 #	3 #
热处理后的晶片	7	21	16	12	33	29
未经热处理的晶片	5	10	19	177	472	260

120

900

60

0 38. 076 38.088

38.100

2θ(deg.)

(a)

Intensity (a.u.)

1250

1000

750

500

38.076

38, 088

20(deg.)

Intensity (a.u.)

图 4 高温热处理前后 InSb 晶片的高分辨 X 射线双晶衍射曲线图

3 结束语

通过对热处理前后的 InSb 晶片进行拉曼光 谱面扫描测试,开发了一种新的 InSb 晶片应力 面分布表征方式。热处理前后 InSb 晶片的横向 光学 TO 声子散射峰分别位于 179.3 cm⁻¹和 178.5 cm⁻¹; LO 声子散射峰分别位于 188.8 cm⁻¹和 188.7 cm⁻¹;特征峰的半峰宽分别是 5.8 cm⁻¹和 5.0 cm⁻¹。热处理后 InSb 晶片的显 微拉曼面扫描 TO 声子散射峰峰位及半峰宽面 分布整体均匀,半峰宽降低,晶片的晶格质量 较佳,均一性更好。热处理后 InSb 晶片的高分 辨 X 射线双晶衍射曲线半峰宽明显减小。用经 热处理后的 InSb 晶片制得的器件在低温烘烤后 盲元增加量较小,整体数量较少。热处理优化 了生长态晶体的热应力和晶片机械加工应力, 提升了晶格质量。后续我们将从多维度持续 优化晶片质量,为新一代超高性能、超大面 阵红外探测器的制备奠定更好的材料基础。

图 5 低温烘烤 20 天前后器件的盲元分布图。 (a)~(c):未经热处理的晶片;(d)~(f):热 处理后的晶片

参考文献

- Hamidreza S. Optimisation of Cooled InSb Detectors [J]. III-Vs Review, 2004, 17(7): 27-31.
- [2] 陆春明,李喆深,董国胜.化学腐蚀和硫处理对 InSb(111)表面的影响[J].物理学报,1992,41
 (4):675-682.
- [3] 柏伟, 庞新义. 4 英寸高质量 InSb 晶体生长研 究 [J]. 红外, 2018, **39**(9): 8-13.
- [4] 付安英,马睿,薛三旺. 高灵敏度室温锑化铟红
 外探测器研制 [J]. 现代电子技术,2007,30
 (2):182-183.
- [5] 彭焕亮. 红外焦平面热成像技术的发展 [J]. 激 光与红外, 2006, 36(Z): 776-780.
- [6] 张雪,梁晓庚. 红外探测器发展需求 [J]. 电光 与控制, 2013, 20(2): 41-44.
- [7] 王利平, 孙韶媛, 王庆宝, 等. 红外焦平面探测 器的读出电路 [J]. 光学技术, 2000, 26(2): 122-125.
- [8] Lucy Z, Meimei T, Leslie A. Developing Highperformance III-V Superlattice IRFPAs for Defense-Challenges and Solutions [C]. SPIE, 2010, 7660: 76601E.
- [9] 方家熊. **红外探测器技术的进展** [M]. 天津: 天 津科学技术出版社, 2003.
- [10] 何力. 先进焦平面技术导论 [M]. 北京: 国防工 业出版社, 2011.
- [11] 柏伟,张立超. 基于高温热处理的 InSb 晶片性 能研究 [J]. 红外, 2021, 42(4): 9-14.
- [12] 柏伟. 锑化铟红外焦平面探测器发展现状 [J]. **红外**, 2019, **40**(8): 1-14.
- [13] 马林,杨瑞霞.不同 Te 掺杂量对 InSb 晶体性能 的影响 [J]. 电子元件与材料,2021,40(6): 547-552.
- [14] 何焰蓝,孙全. InSb 纳米颗粒膜的拉曼光谱研 究 [J]. 激光与红外, 2005, **35**(9): 668-669.