热处理对氧化铋在8µm~14µm 波段内的发射率的影响

胡 晨 徐国跃 左永平 程传伟 蔡 刚 (南京航空航天大学材料科学与技术学院, 江苏南京 210016)

摘 要:本文通过设计正交实验,采用不同的热处理工艺对着色颜料氧化铋粉末进行 热处理,随后测量样品在 8µm~14µm 波段的平均法向发射率,并得出优化的热处理工 艺路线;对各个影响因素进行的分析表明,温度是热处理过程中影响样品发射率变化 的主要因素,并通过 XRD、 SEM、 EDS 等多种表征手段,分析了红外发射率变化的 内在机理。结果表明,晶格畸变是引起发射率变化的主要因素,而由气体分子吸附引 起的表面成分变化对发射率也有一定的影响。

关键词: 红外发射率; 正交实验; 氧化铋; 热处理 中图分类号: TN976 文献标识码: A

Effect of Heat Treatment Process on $8\mu m \sim 14\mu m$ Infrared Emissivity of Bismuth Oxide

HU Chen, XU Guo-yue, ZUO Yong-ping, CHENG Chuan-wei, CAI Gang

(The Institute of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

Abstract: In an orthogonal experiment designed, different heat treatment technics were used to treat the bismuth oxide powder. Then, the average normal emissivity of the samples in the $8\mu m \sim 14\mu m$ waveband were measured and the optimized heat treatment process was obtained. The analysis of the influence factors showed that temperature was the main factor that had influence on the emissivity of the sample in the heat treatment process. The variation mechanism of infrared emissivity was analyzed by means of XRD, SEM and EDS. The analysis result showed that the lattice distortion of crystal was the main factor resulting in emissivity variation and the change of surface composition caused by surface gas adsorption had certain influence on emissivity too.

Key words: infrared emissivity; orthogonal experimentation; bismuth oxide; heat treatment

1 引言

20世纪70年代以来,随着红外探测器的广 泛应用,红外隐身技术无论在飞行器、地面设备 还是战略突防等方面都引起了世界各强国的高 度重视^[1-4]。实现红外隐身的一种重要途径是 在目标表面涂覆一层红外低发射率涂层。红外 涂层一般由颜料和粘合剂两部分组成^[5,6],其中 颜料作为涂层的主要成分,是影响涂层红外性 能的关键因素之一^[7],因此研究探索低发射率 颜料及影响因素将具有重要意义。

收稿日期: 2008-04-25

作者简介: 胡晨 (1984 ----), 男, 浙江丽水人, 在读硕士研究生, 从事红外隐身材料研究。

INFRARED (MONTHLY) / VOL.29, NO.8, AUG 2008

基金项目:国家自然科学基金重大研究计划 (90505008)

2008年8月

颜料一般包括金属颜料、着色颜料和半导体颜料三种^[8]。选用着色颜料主要是为了满足与可见光伪装兼容的要求,也就是说,为了实现视频隐身。其中着色颜料主要用来满足涂层与可见光兼容的要求,一般不能降低涂层的红外发射率,因此着色颜料的筛选一直是红外低发射率,因此者色颜料的筛选一直是红外低发射率,因此在使用上受到了限制^[9]。现在的情况是,比较容易得到发射率极低的白色或灰色涂料样品,可一旦加入彩色颜料,涂层的发射率会急剧升高。经过大量的文献调查以及样品测试,发现氧化物的发射率一般都不低,大多都在 0.8~0.9^[5],其中以两种氧化物最为特殊,其中一种是氧化铋,在普通状态下其发射率约为 0.75。

本文用不同的热处理工艺(温度、时间、气 氛、升温速率、冷却方式等均不同)对氧化铋粉 末进行热处理,并用 IR-2 型发射率测试仪分别 测试粉末的发射率,以挑选出最合适的热处理 工艺条件,并且对选出的粉末进行性能测试和 表征,以此讨论在不同的热处理工艺下氧化铋 发射率的变化规律及其内在机理。

2 实验

2.1 试样制备

本实验的主要原料为某市售 Bi₂O₃。考虑 了热处理过程中温度、气氛、升温速率、保温时 间、降温方式五个方面的影响因素,影响因素的 变量列于试验因素水平表(见表1)。所有的热处 理工艺路线和 8µm ~ 14µm 波段(ε₈₋₁₄)的红外发 射率测试结果均见试验工艺正交表(见表 2)。

	温度 (℃)	气氛	升温速率 (℃/min)	保温 时间 (h)	降温 方式
水平1	1(500)	1 (空气)	1 (10)	1(1)	1 (炉冷)
水平2	2(550)	2 (氩气)	2(2)	2(2)	2 (空冷)
水平 3	3(600)			3(3)	
水平4	4(650)			4 (4)	
水平5	5(700)				
水平6	6 (750)				

表1 试验因素水平表

2.2 粉体表征及红外发射率测试

采用 BRUKER D8 Advanced 型 X 射线衍射 仪对粉体进行物相定性和结构分析;采用 X 射线 能谱仪对样品进行成分分析;采用荷兰 Quanta 200 扫描电子显微镜对样品表面的形貌进行表 征;用傅里叶红外光谱仪测试样品的红外吸收 光谱并分析红外吸收光谱。红外发射率测试采 用中科院上海技术物理研究所研制的 IR-2 型双 波段发射率测量仪,测量样品在 8µm~14µm 波 段的法向平均发射率 (ε_{s-14}),测试温度为 15 ℃ ~ 25 ℃, 空气湿度为 20% ~ 50%。该发射率测 量仪采用反射率法的测试原理,即通过采用主 动黑体辐射源测定待测物表面的法向发射率, 进而计算出待测物表面在特定红外波段的吸收 率σ。根据基尔霍夫定律,物体吸收率在数值上 与其发射率相等, 即 $\sigma = \varepsilon$, 从而测出被测物体 在红外波段内的法向发射率。

3 结果与讨论

3.1 红外发射率测试

采用正交设计研究热处理工艺对 Bi_2O_3 发 射率的影响。 $8\mu m \sim 14\mu m$ 波段内的发射率测试 结果如表 2 所示。

197		4.204	/ (iiiiii	N I & HITT	1.4.100	岩 肘 索
序号	Α	В	速率C	时间 D	方式 E	及剂平
1	1	1	1	1	2	0.720
2	1	2	1	2	1	0.715
3	1	2	2	3	2	
4	1	1	2	4	1	0.703
5	2	2	2	1	1	0.704
6	2	1	2	2	2	0.690
7	2	1	1	3	1	0.705
8	2	2	1	4	2	
9	3	1	1	1	1	0.714
10	3	2	1	2	2	
11	3	2	2	3	1	0.715
12	3	1	2	4	2	0.724
13	4	2	2	1	2	
14	4	1	2	2	1	0.718
15	4	1	1	3	2	0.721
16	4	2	1	4	1	0.728
17	5	1	1	1	1	0.780
18	5	2	1	2	2	
19	5	2	2	3	1	0.779
20	5	1	2	4	2	0.774
21	6	2	2	1	2	
22	6	1	2	2	1	0.778
23	6	1	1	3	2	0.779
24	6	2	1	4	1	0.775

表2 试验工艺正交表

Infrared (monthly) / Vol.29, No.8, Aug 2008

红 外

表 2 发射率栏中的无数据单元格是在氩气 气氛的处理方式中,因此不能在空气中快速冷 却。

表3 不同工艺对 ε_{8-14} 的影响

水亚	<u>工</u> 红外发射率						
小十	А	В	С	D	E		
K1	2.137	5.698	4.302	2.137	5.702		
K2	2.103	2.862	4.258	2.127	2.858		
K3	2.153			2.141		总和 =	
K4	2.167			2.155		13.006	
K5							
K6							
k1	0.713	0.712	0.717	0.712	0.712		
k2	0.701	0.717	0.709	0.709	0.715		
k3	0.718			0.714			
k4	0.722			0.718			
k5							
k6							
R	0.0213	0.0042	0.0073	0.0093	0.0017		

表 3 中的数据已经过正交方法处理,其中 K5、K6、k5、k6 无数据是因为在温度为 700 ℃、750℃时,粉末烧结成块,必须研磨后才能 得到粉末状样品,所以将 K5、K6、k5、k6 的 数据舍去。

从表 3 中可看出,把五个因素的最好水 平组合起来,就得到一个优化的热处理工艺 $A_2B_1C_2D_2E_1$,经这种工艺处理后的氧化铋在8 μ m ~ 14 μ m 波段内的发射率为 0.69 左右。R 为各因 素极差值,极差的大小反应了因素变化时实验指 标的变化幅度,所以因素的极差越大,就是该因 素对指标的影响越大,它就越重要。从表 3 中可 知,极差的大小为: A > D > C > B > E,因此 温度的影响最大,其次为保温时间,接下来是升 温速率和气氛,而冷却方式的影响最小。

3.2 XRD 图谱及分析

图1和图2分别是未经过热处理和经过550 ℃热处理后的氧化铋样品的XRD图。通过图1 和图2的对比,可以发现两试样均以单斜晶系为 主,但经过550℃热处理后的试样只有单斜晶系 的结构。图1中的衍射峰较宽且有少量位移,证 明粉体粒径较小且晶粒存在一定程度的晶格畸 变,而经过550℃热处理后,粒径增大,晶格畸 变减小,因此导致了发射率的变化。

此外,由图1可以看出,未处理过的试样

中还有其它多种晶体结构,具有明显的 Bi₂O₂CO₃的特征衍射峰(2θ=30),这是因为 Bi₂O₃在空气中 会与 CO₂和 H₂O 发生反应,生成 Bi₂O₂CO₃^[10]。 多种组分的混合致使试样晶体结构不均一,其 中存在着部分亚稳态的 Bi₂O₃ 晶型及 Bi₂O₂CO₃ 等物质,它们可能会引起发射率的变化。

3.3 SEM 图分析

图 3 和图 4 分别是未经过热处理和经过 550 ℃热处理后的氧化铋样品的 SEM 图。由图 3 可 看出,未处理过的样品粒度大小不均,粉体颗粒 表面不平整,所以有较大的比表面积和较高的 表面能。

由图 4 可以看出, 经过 550 ℃热处理后的样品处于烧结中期阶段,此阶段中颗粒相互粘结变形,粒界开始移动,颗粒正常长大,且形状多为多面体^[11]。通过比较 SEM 图可知,经过 550 ℃热处理的样品 (图 3)的表面更加光洁平整,有规则的几何外形且比表面积降低,因此必定会使样品的晶格畸变和缺陷浓度减小。

3.4 EDS 分析

图 3 未处理过的样品 (10000×)

图 4 经过 550 ℃热处理后的样品 (5000×)

表4 未经过处理的样品

元素	Wt (%)	At (%)
CK	08.94	43.10
OK	09.48	34.31
BiL	81.58	22.60
矩阵	校正	ZAF

表 5	经过	550	С	热	处	理	的	样	品
*						-			

元素	Wt (%)	At (%)
CK	04.44	39.90
OK	01.73	11.66
BiL	93.83	48.44
矩阵	校正	ZAF

图 5 和图 6 分别是未经过热处理和经过 550 ℃热处理后的氧化铋样品的 EDS 图。由 EDS 图 以及表 4 和表 5 可知,未处理过的样品中的碳、 氧元素含量明显比经过 550 ℃热处理后的样品 高。当加热到 300 ℃附近时, Bi₂O₃ 样品由黄 色变成红棕色,这是由于样品的初步晶化,而 Bi₂O₂CO₃则在580 C附近分解^[10]。在降温过程 中,在459 C处左右时亚稳态的 β -Bi₂O₃转变为 α -Bi₂O₃^[10]。晶型趋向于稳定型,温度的变化 会使样品的单色热发射率发生显著的变化,因为 随着温度的升高,样品表面原来吸附着的有明显 选择性辐射和吸收作用的气体分子部分或全部 消失,使样品表面失去了这种选择性吸收和辐 射的特性^[12]。可以认为,在经过热处理的样品 中,原来吸附的 CO₂和 H₂O 脱附,而 Bi₂O₂CO₃ 分解后含量减少,这种由表面吸附引起的表面 成分变化,必定会引起发射率的改变。

3.5 FTIR 红外吸收光谱分析

图 7 和图 8 分别是未经过热处理和经过 550 ℃热处理后的氧化铋样品的 FTIR 红外吸收光谱 图。由图可知, Bi₂O₃ 的吸收峰的位置基本处于 8µm ~ 14µm 波段(即 714 ~ 1250cm⁻¹),经过热 处理后,其红外发射率在 0.69 左右。若在此基础 上采用掺杂等其它处理方式,使其吸收峰产生 红移或蓝移,应该可以使该波段的红外发射率 进一步降低。这反映了 Bi₂O₃ 在着色颜料的体系 中有进一步研究的价值。

4 结论

采用正交实验分析了不同热处理工艺对氧 化铋粉体在 8µm ~ 14µm 波段内的红外发射率的

简 讯

红外摄像机

Cedip 红外系统公司生产的"银色 660M"是一种 把致冷型锑化铟凝视焦平面列阵探测器同读出集成电路结合起来的红外摄像机。当以全帧模式工作时,这种 具有 640×512 像素的摄像机的工作频率在1Hz ~ 100Hz 影响,认为在热处理过程中各个因素对发射率 变化有着不同程度的影响,其中温度是主要因 素。通过 XRD、SEM、EDS 等多种表征方法, 对发射率的变化原因进行了分析,认为在热处 理过程中,晶格畸变是引起发射率变化的主要 因素;而气体分子的选择性吸附对发射率也有 很大的影响。

参考文献

- 谢国华,吴瑞彬,吴伶芝.红外隐身材料的现状与 展望[J].宇航材料工艺,2001,4:5-10.
- [2] 李新华,等.国外涂料型红外隐身材料研制现状和 发展方向分析 [J]. 红外技术, 1994, 16(1): 5–11.
- [3] 王博,孙晓泉,王自荣.涂层光电隐身效果评估方法研究 [J].量子电子学报,2004,21(4):538-541.
- [4] 张冬梅,朱春婷,等.涡轮风扇发动机在飞机红外隐 身技术中的应用研究 [J]. 红外, 2006, 27(11): 5-8.
- [5] 王庭慰,程从亮,张其土.低红外发射率涂料的研究[J].光学技术,2005,31(4):598-600.
- [6] 张宏元, 郭俊杰. 红外隐身材料的性能特征述评 [J]. 化工新型材料, 2003, 131(1): 30-33.
- [7] 王自荣,等. 红外隐身涂料颜料发射率研究 [J]. 上海航天, 2000, (1): 24–26.
- [8] 费逸伟,黄之杰,唐卫红,等.料对低发射率涂料 红外辐射特性的影响 [J]. 材料科学与工程,2002, 20(3):449-453.
- [9] Kleisner R J, Kock B H, Phillips M R, et al. Thin Solid Films [J]. 2001, 381: 10–14.
- [10] 李榕, 甄强, 郭曙强, 等. 纳米氧化铋基材料高温相 变的研究 [J]. 功能材料, 2006, 37(11): 1828–1831.
- [11] 宋晓岚, 黄学辉. 无机材料科学基础 [M]. 北京: 化 学工业出版社, 2006: 155-164.
- [12] 奚同庚. 无机材料热物性学 [M]. 上海: 上海科学技 术出版社, 1981: 325-340.

范围内可由程序控制;当以子列阵开窗模式工作时,其 积分时间可以1µs的增量调节。被封装在铝壳内之后, 摄像机仅靠传导散热,其温度灵敏度为15mK,并能与 标准的计算机以及帧采样器和图像处理软件兼容。通 过摄像机链路或者USB接口,该摄像机能以14bit的动 态范围和40MHz的像素速率传递视频图像或者传送指 令。

□顾聚兴