Optimization Design Method of Cantilever Beam Structure of Infrared Detector-Dewar Assembly
DOI:
CSTR:
Author:
Affiliation:

Clc Number:

TN215

Fund Project:

  • Article
  • |
  • Figures
  • |
  • Metrics
  • |
  • Reference
  • |
  • Related
  • |
  • Cited by
  • |
  • Materials
  • |
  • Comments
    Abstract:

    In high-level vibration application scenarios, the cantilever beam structure of the infrared detector-dewar assembly is easily damaged. A non-contact helical spring support ring structure is designed. Between the dewar shell and the cold finger, the dewar heat leakage increased by the traditional strengthening scheme is greatly reduced through a non-contact method, and the vibration energy is converted into elastic potential energy, thereby reducing the stress impact of high-level vibration on the cold head. After simulation analysis and optimization with Ansys software, the maximum deformation of the platinum-iridium wire is 1.7 mm, which is 57.5% lower than the conventional structure; the maximum stress decreases by 52% to 307 MPa. Experimental results show that the average heat leakage after optimization increased by only 1%, while having significantly improved vibration resistance. The assemblies with conventional structures would experience platinum-iridium wire breakage after enduring 15 grms durable random vibration, while the optimized assemblies can withstand 15 grms durable random vibration and 17.6 grms short-term high-level random vibration. The optimized assemblies keep the detector focal plane temperature stable during 17.6 grms random vibration without affecting their normal operation.

    Reference
    Related
    Cited by
Get Citation

ZHANG Yang-Wen, SHEN Xing, HONG Xiao-Mai, et al. Optimization Design Method of Cantilever Beam Structure of Infrared Detector-Dewar Assembly[J]. Infrared,2024,45(12):26~33

Copy
Share
Article Metrics
  • Abstract:
  • PDF:
  • HTML:
  • Cited by:
Article QR Code