基于CARS-CNN-GRU模型的发动机尾焰红外光谱浓度求解方法
DOI:
CSTR:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:

国家自然科学基金项目(61602321)


A Method for Calculating the Infrared Spectrum Concentration of Engine Tail Flame Based on the CARS-CNN-GRU Model
Author:
Affiliation:

Fund Project:

National Natural Science Foundation of China (No. 61602321)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    针对发动机尾焰组分浓度对红外光谱辐射强度的重要性,提出了一种高效的红外光谱浓度求解模型,即结合竞争性自适应重加权采样(Competitive Adaptive Reweighted Sampling, CARS)算法与卷积神经网络(Convolutional Neural Network, CNN)-门控循环单元(Gate Recurrent Unit, GRU)深度学习算法的CARS-CNN-GRU模型。该方法通过CARS算法筛选关键波长,获取尾焰成分浓度信息,然后利用CNN-GRU模型对序列数据进行长程依赖分析,实现多尺度特征提取。仿真结果表明,与传统模型相比,CARS-CNN-GRU模型在H2O和CO2浓度求解方面具有更高精度,其均方根误差(Root Mean Square Error, RMSE)分别降至0.0014和0.0017,R2值分别为0.999和0.998,平均绝对误差(Mean Absolute Error, MAE)分别为0.0011和0.0014。本文提出的CARS-CNN-GRU模型在红外光谱浓度求解方面展现出优越的性能,相较于传统方法具有更高精度、稳定性和可靠性,为军事和民用航空领域的隐身技术、环境监测以及燃烧效率评估等方面提供了有力支持。

    Abstract:

    In view of the importance of the concentration of engine tail flame components to the infrared spectrum radiation intensity, an efficient infrared spectrum concentration solution model is proposed, namely the CARS-CNN-GRU model which combines the competitive adaptive reweighted sampling (CARS) algorithm with the convolutional neural network (CNN)-gated recurrent unit (GRU) deep learning algorithm. This method uses the CARS algorithm to select the key wavelengths and obtain the tail flame component concentration information. Then the CNN-GRU model is used to perform long-range dependency analysis on the sequence data to achieve multi-scale feature extraction. Simulation results show that compared with the traditional models, the CARS-CNN-GRU model has higher accuracy in solving H2O and CO2 concentrations. Its root mean square error (RMSE) is reduced to 0.0014 and 0.0017, respectively. The R2 value is 0.999 and 0.998, respectively; the mean absolute error (MAE) is 0.0011 and 0.0014, respectively. The CARS-CNN-GRU model proposed in this paper shows superior performance in solving infrared spectral concentration. Compared with traditional methods, it has higher accuracy, stability and reliability, and provides strong support for stealth technology, environmental monitoring and combustion efficiency evaluation in the military and civil aviation fields.

    参考文献
    相似文献
    引证文献
引用本文

傅莉,张昆,孙旭.基于CARS-CNN-GRU模型的发动机尾焰红外光谱浓度求解方法[J].红外,2025,46(6):24-33.

复制
相关视频

分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
文章二维码