首页 | 杂志简介 | 征稿简则 | 投稿指南 | 常见问题 | 名词解释 | 刊物订阅 | 联系我们 | English
单目深度估计技术研究
投稿时间:2024-12-05  修订日期:2025-01-06  点此下载全文
引用本文:
摘要点击次数: 20
全文下载次数: 0
作者单位地址
王诚* 华北光电技术研究所 北京朝阳区酒仙桥路4号
中文摘要:单目深度估计是计算机视觉领域的一个重要研究方向,在三维重建,目标跟踪,场景理解等众多应用中起到重要作用。由于单目摄像头具有低成本,设备较为普及,图像获取方便等特征,使得从单目图像获取深度信息的课题成为热门研究。本文首先概述了单目深度估计的常见深度学习模型,主要包括CNN,RNN和GAN这三个模型。然后从训练方法的角度归纳了单目深度估计的深度学习方法,主要分为有监督学习,无监督学习和半监督学习桑方面。最后本文对单目深度估计的发展趋势进行了总结。
中文关键词:单目深度估计  计算机视觉  深度学习
 
A Review of Monocular Depth Estimation Research
Abstract:Monocular depth estimation is an important research direction in the field of computer vision, which plays an important role in 3D reconstruction, target tracking, scene understanding and many other appliactions. Due to the characteristics of monocular camera, such as low cost, more popular equipment, and easy image acquisition, the topic of depth information acquisition from monocular images has become a popular research topic. Firstly, the common deep learning models for monocular depth estimation are summarized, mainly including CNN, RNN and GAN. Then, the deep learning methods for monocular depth estimation are summarized from the perspective of training methods, which are mainly divided into supervised learning, unsupervised learning and semi-supervised learning. Finally, the development trend of monocular depth estimation is summarized in this paper.
keywords:monocular depth estimation  computer vision  deep learning
  HTML  查看/发表评论  下载PDF阅读器

版权所有:《红外》编辑部

北京勤云科技发展有限公司