文章编号: 1672-8785(2017)03-0021-010

基于短波红外波段的乌梁素海 Landsat-8 OLI数据大气校正

青松1 包玉海1,2 郝艳玲3

(1. 内蒙古师范大学地理科学学院,内蒙古呼和浩特 010022;
2. 内蒙古自治区遥感与地理信息系统重点实验室,内蒙古呼和浩特 010022;
3. 内蒙古大学环境与资源学院,内蒙古呼和浩特 010021)

摘 要:采用基于短波红外波段的 Vanhellemont 和 Ruddick 算法对乌梁素海水体的 Landsat-8 业务陆地成像仪 (Operational Land Imager, OLI) 数据进行了大气校正。用该算 法得到的 OLI 反射率与 ENVI Flaash 大气校正结果之间具有很好的一致性,且 R² 为 0.8。经大气校正后得到的 OLI 反射率与实测值吻合得较好,而且 483 nm、561 nm 和 655 nm 波段的误差在 19.3% ~ 36.5% 之间,表明该算法适用于乌梁素海水体。基于时间 序列 OLI 数据,得到了悬浮物浓度的时空分布特征。乌梁素海的悬浮物浓度反演结果 存在一定的不确定性,其主要原因是底质、沉水植物和藻华对离水反射率有很大影响。

关键词: 短波红外; Landsat-8; 大气校正; 乌梁素海

中图分类号: TP7 文献标志码: A DOI: 10.3969/j.issn.1672-8785.2017.03.005

Atmospheric Correction of Landsat–8 OLI Data for Wuliangsuhai Lake Based on SWIR Bands

QING Song ¹, BAO Yu-hai ^{1,2}, HAO Yan-ling ³

 College of Geographical Science of Inner Mongolia Normal University, Hohhot 010022, China;
 Inner Mongolian Key Laboratory of Remote Sensing and Geography Information System, Inner Mongolia Normal University, Hohhot 010022, China; 3. College of Environment

and Resource, Inner Mongolia University, Hohhot 010021, China)

Abstract: Atmospheric correction of the data about Wuliangsuhai Lake from the Operational Land Imager (OLI) onboard Landsat-8 was carried out by using the Vanhellemont & Ruddick algorithm based on shortwave infrared bands. The OLI reflectance derived by this algorithm agreeded well with that from the ENVI Flaash model. Its correlation coefficient was 0.8. The OLI reflectance derived after atmospheric correction was well consistent with the measured value. Their errors at the wavelengths of 483 nm, 561 nm and 655 nm were in the range from 19.3% to 36.5%. This showed that this algorithm was suitable for Wuliangsuhai Lake. On the basis of time series data from the OLI onboard Landsat-8, the temporal and spatial distribution characteristics of suspended particulate matter concentration were obtained. However, there existed some uncertainties in the retrieval result of suspended particulate matter concentration in Wuliangsuhai Lake. The main reason was that the reflectance from the bottom,

收稿日期: 2016–12–14

基金项目:国家自然科学基金项目(61265008);内蒙古自然科学基金项目(2012MS0608)

作者简介:青松(1982-),男,内蒙古通辽人,副教授,主要研究方向为光学遥感机理与应用。

E-mail: chrisqs27@126.com

submerged vegetation and algae bloom in the lake had great influences on the water leaving reflectance.

Key words: SWIR; Landsat-8; atmospheric correction; Wuliangsuhai Lake

0 引言

随着定量遥感技术的不断发展,关于地球 表面参量的遥感反演研究越来越受到人们的关 注。遥感数据的大气校正是准确提取地表参量的 前提和重要环节。尤其是在水色遥感研究中,开 展高质量的大气校正工作对于水体要素的精确 反演至关重要。

在国内外的水色遥感研究中,人们已经提出 了多种大气校正方法。其中,基于辐射传输理论 的有 MOTRAN 和 6S 等主流算法 [1-6]。然而,此 类方法需要实时的大气参数数据,并且计算量 大。因此,基于特定波段遥感影像的算法得到了 很好的发展。针对一类水体, Gordon HR等人基 于近红外波段的离水辐亮度为零的假设,提出 了一种关于大洋水体的大气校正算法 [7-8]。然 而,在浑浊水体中,近红外波段的水体反射率不 为零,因此该算法在二类水体中得到了进一步的 优化,并出现了两种假设:(1) 浑浊水体在近红外 波段的反射率的比值为常数; (2) 浑浊水体在短 波红外波段的反射率为零。Wang MH等人提出 了一种基于近红外和短波红外波段的算法,并成 功开展了浑浊水体 MODIS 数据的大气校正工作 ^[9-10]。Chen SG等人检验了近红外-短波红外 算法对于中国东海 MODIS 数据的适用性^[11]。 He Q J 等人将改进的近红外 - 短波红外算法应 用于珠江口水体的 MODIS 数据^[12]。类似的改 进算法还有 Wang M H 等人提出的基于 1640 nm 和 2130 nm 两个短波红外波段的算法、Chen J 等 人提出的交叉定标模型以及 Zhang M W 等人提 出的迭代算法等 [13-15]。此外,针对缺少短波红 外波段的 SeaWiFs 数据, He X Q 等人利用一种基 于 412 nm 波段的方法对沿岸水体和内陆湖泊的 SeaWiFs 数据进行了大气校正^[16]。但是 MODIS 等卫星数据的空间分辨率较低 (250 m), 不适合 于小尺度区域的遥感监测。而 Landsat-8 OLI 数 据则具有较高的空间分辨率(30 m),更适合于 海岸带区域和内陆湖泊水体的监测^[17]。此外,

由于信噪比较高的两个短波红外波段 (1609 nm 和 2201 nm)的存在,基于短波红外波段的大气 校正算法适用于 OLI 数据。目前,该领域已经出 现了 OLI 数据大气校正的相关研究^[18-25]。其 中, Vanhellemont Q 和 Ruddick K 等人提出的基 于近红外和短波红外波段的算法简单且易于实 现,并在比利时的沿岸浑浊水体和泰晤士河口 水体中得到了检验^[20-21]。然而,该算法在复杂 的内陆湖泊水体中的适用性尚未得到检验。

本文以蒙古高原典型湖泊 — 乌梁素海为研究区,利用 Vanhellemont 和 Ruddick 大气校正 算法来实现研究区 Landsat-8 OLI 数据的大气校 正,进而检验该算法在复杂的湖泊水体中的适 用性。在此基础上,利用时间序列 OLI 数据反演 乌梁素海水体的悬浮物浓度,并对其时空分布 特征和影响因素进行分析。

1 研究数据

1.1 研究区

乌梁素海位于 40°46′N ~ 41°08′N 和 108°42′E ~ 108°57′E,属于内蒙古自治区巴彦诺尔市乌拉 特前旗(见图 1)。其东西跨度约为 10 km,南北 跨度约为 40 km (根据 2013 年的 Landsat-8 OLI 影 像),湖水较浅,平均水深约为 1 m。乌梁素海 西岸自北向南有总排干、通济渠、八排干、长济 渠、九排干、塔布渠和十排干等主要灌溉渠与湖 体相连^[26]。受灌区农田退水、工业废水和生活 污水的影响,乌梁素海水体遭到严重污染,富营 养化程度加剧,导致近几年经常发生黄苔藻华 现象。湖区芦苇蔓延,部分湖底长有水草,使得 乌梁素海成为大型的草型湖泊。

本文在灌区总排干附近和南部退水闸附近 的湖区中选取了两个用于悬浮物浓度时空分布 特征分析的样区(见图1)。

1.2 实测数据

实测数据为 2013 年 10 月 16 日在乌梁素海 水域测得的遥感反射率数据。通过质量控制选 取 13 个站位数据 (见图 1),并将其作为研究区

图 1 乌梁素海研究区实测数据的站位图以及选取的两个样区

大气校正结果的检验数据。利用美国 ASD 公司 生产的便携式光谱仪测量水体遥感反射率。光 谱测量在低风速以及晴朗天气条件下开展。测 量观测的方位角和天顶角分别为 135°和 40°, 以避免发生镜面反射和消除阴影的影响。每个 站点测量 3次,并保留相对误差小于 10% 的站 位数据。图 2 所示为遥感反射率光谱曲线。可以 看出,12 个站位的光谱曲线形状很相似,但遥 感反射率数值大小之间具有明显差异;现场观 测中发现站位 1、3 和 5 的悬浮物浓度高,因此 在 440 ~ 700 nm 范围内的遥感反射率较高;1 个 站位 (站位 10) 的水底长有沉水植物,因此在 700 nm 之后的波段中出现了明显的植被反射峰。

1.3 遥感数据

Landsat-8 OLI 数据拥有 9 个波段。其中, 波段 8 为全色波段,其空间分辨率为 15 m;其 他波段的空间分辨率均为 30 m;波段 5 为近红 外 (NIR) 波段,波段 6 和 7 为短波红外 (SWIR) 波段,可用于 OLI 数据的大气校正 (见表 1)。 Landsat-8 卫星的重访周期为 16 天,扫描宽度为 185 km,信噪比比 Landsat TM 和 ETM+更高。本 文经下载得到乌梁素海 2013 年和 2015 年的 6 景 无云雾覆盖的 Landsat-8 数据,轨道号为 128/32 (数据名称和成像日期见表 2)。

2 研究方法

2.1 大气校正算法

2.1.1 大气层顶的反射率计算

首先,利用式(1)计算大气层顶的辐射亮度:

$$L = aDN + b \tag{1}$$

式中, L 为大气层顶的辐射亮度; DN 为图像灰度值; a 和 b 分别为定标参数, 可从 Landsat-8 OLI 元数据中获取。

然后利用式(2)将辐射亮度转换为大气层顶 的反射率:

波段序号	波段 (nm)	中心波长 (nm)	$F_0 \; (\mathrm{W} \cdot \mathrm{m}^{-2} \cdot \mu \mathrm{m}^{-1})$	$ au_r$	$ au_{oz}$
1	$443 \sim 453$	443	1895.6	2.35×10^{-1}	8.79×10^{-4}
2	$450 \sim 515$	483	2004.6	1.69×10^{-1}	5.87×10^{-3}
3	$525 \sim 600$	561	1820.7	9.02×10^{-2}	3.14×10^{-2}
4	$630 \sim 680$	655	1549.4	4.79×10^{-2}	1.82×10^{-2}
5	$845 \sim 885$	865	951.2	1.55×10^{-2}	6.43×10^{-4}
6	$1560 \sim 1660$	1609	247.6	1.28×10^{-3}	0
7	$2100\sim2300$	2201	85.5	3.70×10^{-4}	0
8	$500 \sim 680$	591	1724.0	7.94×10^{-2}	2.66×10^{-2}
9	$1360 \sim 1390$	1373	367.0	2.40×10^{-3}	0

注: F_0 为波段平均的大气层外太阳辐照度, τ_r 和 τ_{oz} 分别为瑞利光学厚度和臭氧光学厚度

OLI 影像	成像日期	作图序号
LC81280322013279LGN00	20131006	
LC81280322013295LGN00	20131022	
LC81280322015205LGN00	20150724	a
LC81280322015237LGN00	20150825	b
LC81280322015269LGN00	20150926	с
LC81280322015285LGN00	20151012	d

表 2 乌梁素海的 Landsat-8 OLI 图幅名称和成像日期

注:斜体加粗代表本文所展示的悬浮物浓度遥感反演结果图

$$\rho_{\scriptscriptstyle TOA} = \frac{\pi L d^2}{F_0 \cos \theta_0} \tag{2}$$

式中, ρ_{TOA} 为大气层顶的反射率;d为日地距离; F_0 为波段平均的大气层外太阳辐照度; θ_0 为太阳高度角。

2.1.2 瑞利校正

水体的大气层顶反射率可以表示为气体分 子反射率(即瑞利反射率)、气溶胶反射率和离 水反射率之和:

$$\rho_{\scriptscriptstyle TOA} = \rho_r + \rho_a + t\rho_w \tag{3}$$

式中, ρ_r 为气体分子反射率; ρ_a 为气溶胶反射率; ρ_w 为离水反射率; t 为大气透射率。 ρ_r 的计 算公式为

$$\rho_r = \tau_r p_r(\theta_0, \theta_v, \Delta\phi) (4\cos\theta_0\cos\theta_v)^{-1} \qquad (4)$$

式中, τ_r 为瑞利光学厚度; p_r 为瑞利散射分布函数; θ_0 和 θ_v 分别为太阳和卫星的天顶角; $\Delta \phi$ 为太阳和卫星的相对方位角。透射率 t 可表示为

$$t = \exp\left[-\left(\frac{\tau_r}{2} + \tau_{oz}\right) / \cos\theta_0\right] \tag{5}$$

式中, Toz 为臭氧光学厚度 (见表 1)。

因此, 通过将 ρ_{TOA} 减去 ρ_r 可以得到经瑞利 校正后的反射率 ρ_c :

$$\rho_c = \rho_{TOA} - \rho_r = \rho_a + t\rho_w \tag{6}$$

2.1.3 气溶胶校正

Vanhellemont 和 Ruddick 算法的核心是气溶 胶校正。此算法有两个假设: (1) 近红外和短波 红外波段的 ρ_w 值为零,因此在近红外和短波红 外波段处, $\rho_a = \rho_c$; (2) 近红外和短波红外波段 的气溶胶反射比 ε 为常数,可表示为

$$\varepsilon^{(S,L)} = \frac{\rho_a^{(S)}}{\rho_a^{(L)}} = \frac{\rho_c^{(S)}}{\rho_c^{(L)}} \tag{7}$$

式中, *S* 和 *L* 代表 OLI 数据的近红外和短波红外 波段, 对应于波段 5、6 和 7。

由 $\varepsilon^{(S,L)}$ 可以得到第 *i* 波段的 $\varepsilon^{[7]}$:

$$\varepsilon^{(i,L)} = (\varepsilon^{(S,L)})^{\delta_i} \tag{8}$$

式中, $\delta_i = (L - \lambda_i)/(L - S)$ 。

然后第*i*波段的气溶胶反射率可由式(9)计算得到:

$$\rho_a^i = \varepsilon^{(i,L)} \rho_a^L \tag{9}$$

将式(8)和式(9)代入式(6),可以得到OLI 数据各波段的离水反射率:

$$\rho_w^i = \frac{1}{t^i} \left[\rho_c^i - (\varepsilon^{(S,L)})^{\delta_i} \rho_a^L \right] \tag{10}$$

2.2 算法适用性的检验

Landsat-8 卫星在乌梁素海光谱测量实验当 天 (2013年10月16日)没有过境,因此本文采用 以下两种方式对算法适用性进行检验:(1)利用 ENVI Flaash 大气校正结果检验本文算法的适用 性;(2)利用 2013年10月16日的实测光谱数据 检验 2013年10月6日和10月22日两景 OLI 数 据的大气校正结果(与光谱测量时间相差10天 和6天)。

首先,对实测遥感反射率进行波段等效积分处理,得到443 nm、483 nm、561 nm、655 nm和865 nm五个波段的离水反射率。式(11)为波段有效积分的运算公式:

$$\rho = \frac{\sum_{\lambda} \rho(\lambda) F(\lambda)}{\sum_{\lambda} F(\lambda)}$$
(11)

其次,从大气校正后的 OLI 图像中提取离 水反射率。选取与实测光谱数据对应的 3×3 像 元窗口;统计 9 个像元反射率的平均值和标准 差,并剔除反射率值在均值 ±1.5 倍标准差范围 以外的像元;计算剩余像元的反射率的平均值。

最后,利用式 (12) 计算实测数据与 OLI 数据中 ρ_w 的平均相对误差:

$$e = \exp\left(\sum_{i=1}^{13} \left| \ln(x_i/y_i) \right| / 13 \right) - 1$$
 (12)

http://journal.sitp.ac.cn/hw

式中, e 为平均相对误差; x_i 和 y_i 分别为实测数 据和 OLI 数据中的 ρ_w 值。

2.3 悬浮物浓度的反演

本文利用单波段算法来反演乌梁素海水体的悬浮物浓度^[27]:

$$SPM = \frac{A\rho_w^4}{1 - \rho_w^4/C} \tag{13}$$

式中, SPM 为悬浮物浓度; ρ_w^4 为波段 4 的离水 反射率; $A=289.29 \text{ g/m}^3$; C=0.1686。

3 结果与讨论

3.1 乌梁素海 OLI 数据的大气校正

3.1.1 气溶胶校正

气溶胶反射比 ε 的计算是 Vanhellemont 和 Ruddick 算法的关键步骤,即选择特定波段。乌 梁素海芦苇蔓延,部分水域长有沉水植物,而且 近几年经常发生藻华现象,水体的离水反射率 很复杂。图 3 所示为乌梁素海开阔水体、沉水植 物、黄苔藻华和芦苇的 ρ_c 光谱。可以看出,由于 植被在近红外波段的高反射现象,沉水植物、 黄苔藻华和芦苇在波段 5 的反射率与开阔水体 的反射率之间具有很大差异,说明乌梁素海水 体的 $\varepsilon^{(5,6)}$ (或 $\varepsilon^{(5,7)}$)值不是常数,因此基于 $\varepsilon^{(5,6)}$ (或 $\varepsilon^{(5,7)}$)的气溶胶校正不适合乌梁素海水体。 芦苇在波段 6 或波段 7 的反射率与开阔水体、沉

INFRARED (MONTHLY)/VOL.38, NO.3, MAR 2017

水植物和黄苔藻华的反射率之间具有较大差 异,但乌梁素海的芦苇密度大(约100株/m²), 可视为陆地植被,所以本文未考虑芦苇区的大 气校正。开阔水体、沉水植物和黄苔藻华的反射 率在波段6或波段7也存在一定的差异,然而其 比值 $\varepsilon^{(6,7)}$ 约为常数。在波段6和波段7,黄苔 藻华和部分水域沉水植被的反射率 $\rho_a \neq \rho_c$ 。然 而对于开阔水体, $\rho_a \approx \rho_c$ 的假设依然成立,因 此选取 S=6和 L=7来计算气溶胶反射比 ε 。

本文对 Vanhellemont 和 Ruddick 算法的式 (10) 作了细微调整,即

$$\rho_w^i = \frac{1}{t^i} \left[\rho_c^i - (ow\varepsilon^{(6,7)})^{\delta_i} ow\rho_c^7 \right]$$
(14)

式中, $ow\varepsilon^{(6,7)}$ 为基于 OLI 波段 6 和波段 7 计算得 到的开阔水体的 $\varepsilon^{(6,7)}$; $ow\rho_c^7$ 为开阔水体在波段 7 的 ρ_c 。首先, 利用 $NDVI = (\rho_c^5 - \rho_c^4)/(\rho_c^5 + \rho_c^4) < 0$ 规则区分开阔水体与其他三类, 然后统计开阔 水体的 $\varepsilon^{(6,7)}$ 和 ρ_c , 并对其取中值作为式 (14) 的 输入值。

3.1.2 算法适用性与误差源

为了检验大气校正算法的适用性,我们对由 Vanhellemont 和 Ruddick 算法获取的 OLI 反射率 与由 ENVI Flaash 大气校正模块获取的 OLI 反射 率进行了对比 (见图 4)。可以看出,通过这两种方 式得到的 OLI 反射率之间具有非常好的一致性 $(R^2=0.8, 斜率为 1.07\approx 1.0, 截距为 -0.004\approx 0),$

表明本文算法适用于乌梁素海 OLI 数据的大气 校正。

此外,我们还对 2013 年 10 月 6 日和 10 月 22 日 OLI 数据中的 ρ_w 与 2013 年 10 月 16 日的 实测离水反射率进行了对比 (见图 5)。从整体上 来看,大气校正后 OLI 数据中的反射率与实测 值之间的一致性较好,但在个别波段仍存在较 大差异。在 2013 年 10 月 6 日获得的数据中,波 段 1 ~ 5 的平均相对误差分别为 65.1%、36.5%、 19.3%、24.7% 和 188.6%; 2013 年 10 月 22 日则为 50.3%、28.3%、23.9%、29.4% 和 79.4%。其中, 443 nm 波段和 865 nm 波段的误差较大,其平均 相对误差超过了 50%,2013 年 10 月 6 日 865 nm 波段的误差甚至达到了 188.6%; 483 nm、561 nm

图 5 大气校正后的 OLI 反射率与实测值对比: (a) 2013 年 10 月 6 日; (b) 2013 年 10 月 22 日

和 655 nm 三个波段的大气校正结果较好,除了 2013年10月6日的483 nm 波段之外, 其他波段 的相对误差均优于 30%。结果表明, 483 nm、 561 nm 和 655 nm 三个波段的反射率变化波动不 大, 然而 443 nm 和 865 nm 波段的反射率则比较 敏感。存在这些误差的主要原因是实测与卫星 过境时间存在差异。在 2013年 10月6日、10月 16日和10月22日,研究区内的光照、气候等 环境条件和人类活动痕迹必然不同,因而水体 性质也会不同。这会直接影响表观光学性质, 导致水体反射率的数值大小发生变化。然而,在 2013年10月6日至22日的16天短周期内,水 体反射率的光谱形状不会发生很大变化,说明 由 Vanhellemont 和 Ruddick 算法获取的 OLI 离水 反射率适用于对乌梁素海水体要素的时空分布 趋势进行分析。

3.2 乌梁素海悬浮物浓度的遥感反演

3.2.1 悬浮物浓度算法的检验

由于乌梁素海研究区没有实测的悬浮物浓 度数据,本文对比了基于 2013 年 10 月 16 日 13 个站位的实测遥感反射率数据和 2013 年 10 月 6 日、10 月 22 日大气校正后的 OLI ρ_w 数据计算 得到的 SPM 结果,并定性地检验了 SPM 反演算 法。在站位1、3和5处计算得到的 SPM 浓度较高,分别为18.97 g/m³、18.04 g/m³和49.2 g/m³。 这与现场观测很吻合。在 2013 年 10 月 16 日的 现场观测中,发现这三个站位的水体透明度很 低。其原因是站位1和3位于西大滩,离灌区总 排干很近,而站位5则位于出海码头附近,受陆 源输入的影响大,因此水体非常浑浊。站位4的 SPM 浓度最低 (4.2 g/m³),现场观测中发现此 处水体清澈。站位10的水体也清澈,但其 SPM 浓度却达到了 15.0 g/m³,因为水底长有沉水植 物,水底植物的反射对离水反射率有一定的贡 献,导致反演出的 SPM 浓度也高。其他站位的 悬浮物浓度均未超过 15 g/m³。

图 6 和图 7 为 2013 年 10 月 6 日和 10 月 22 日乌梁素海特征较为明显的 4 个站位的 OLI ρ_w 真彩色合成图 (波段 4、3 和 2 的合成图)。受灌 区退水影响的站位 1、站位 4 的清澈水体、码 头附近的高悬浮物带和站位 4 的水下植被均在 OLI ρ_w 真彩色合成图中清晰可见。另外,经反演 得到的 SPM 浓度变化也能够反映在这些合成图 中。例如, 2013 年 10 月 6 日站位 1 处于悬浮物 高浓度区与低浓度区的衔接处, 而 2013 年 10 月

图 6 乌梁素海 2013 年 10 月 6 日的 OLI ρ_w 真彩色合成图

图 7 乌梁素海 2013 年 10 月 22 日的 OLI ρ_w 真彩色合成图

图 9 由 Landsat OLI 数据获取的乌梁素海样区 II 的悬浮物浓度分布图

22 日整个西大滩均为高浓度区。因此,2013 年 10 月 6 日的 SPM 浓度 (17.95 g/m³) 低于 10 日的 SPM 浓度值 (46.7 g/m³)。结果表明,该算法在 乌梁素海水域具有一定的适用性。

3.2.2 悬浮物浓度的时空变化特性

28

由时间序列 OLI 数据 (2015 年 7 月至 10 月) 获取的悬浮物浓度图能够较好地刻画出样区 I 和样区Ⅱ的悬浮物浓度的时空分布特征(见图8 和图 9)。受总排干两个排水渠的输入影响,在 样区1中,两个悬浮物浓度锋清晰可见,尤其在 10月份的高浓度面积很大。7月和8月的悬浮物 浓度较低, 然而从 9 月底开始升高, 直至 10 月 份达到最高峰。样区 II 的悬浮物浓度的时空分 布十分复杂。此区域受灌区塔布渠和十排干的 输入影响,并且由于渔场很多,人类活动频繁; 2015年,此样区东北部开始建设旅游码头,所以 图 9(a) 和图 9(b) 中明显出现了由码头工程引起 的高悬浮物浓度带。值得注意的是,图 9(c) 和图 9(d) 中黑色椭圆区域的悬浮物浓度也较高, 其 原因是 2015 年 6 月至 8 月乌梁素海暴发黄苔藻 华, 且椭圆区域为藻华高发区, 因此黄苔藻华的 高反射率导致反演出的悬浮物浓度升高。然而9 月和 10 月椭圆区域的悬浮物浓度依然较高,其 原因是虽然黄苔藻华消退,但此区域长有大量 水草,水草的反射率会对离水反射率造成一定 影响,因此反演出的悬浮物浓度仍然较高。结果 表明,底质、沉水植物和黄苔藻华会直接影响悬 浮物浓度的反演结果。若要精确反演悬浮物浓 度,则须对底质、沉水植物和藁华水体的反射率 进行校正。

4 结束语

基于 Vanhellemont 和 Ruddick 算法,利用短 波红外波段对乌梁素海水体的 Landsat-8 OLI 数 据进行了大气校正。利用由 ENVI Flaash 模块得 到的结果检验了 OLI 数据的大气校正结果。经检 验发现,用以上两种方式得到的离水反射率之间 具有很好的一致性 (*R*² 为 0.8,斜率约为 1.0,截 距约为 0)。利用 2013 年 10 月 16 日的光谱数据 检验了 2013 年 10 月 6 日和 10 月 22 日两景 OLI 数据的大气校正结果,发现 OLI 数据在 443 nm 和 865 nm 波段存在较大误差,其平均相对误差 超过 50%;在 483 nm、561 nm 和 655 nm 波段,大 气校正的平均相对误差在 19.3% ~ 36.5% 之间; 这些波段在大气校正之后的离水反射率与实测 数据吻合得较好。误差原因主要是实测时间与 卫星过境时间的不匹配。用基于红光波段 (OLI 数据中的 655 nm 波段) 的算法反演了乌梁素海 的悬浮物浓度。基于真彩色合成图的定性检验 结果表明, 该算法在乌梁素海水域具有一定的 适用性。本文利用时间序列 OLI 数据分析了乌 梁素海悬浮物浓度的时空分布特征。受灌区农 田退水和人类活动的影响, 乌梁素海悬浮物浓 度的时空分布特征十分复杂。然而, 悬浮物浓度 的反演具有一定的不确定性,其主要原因是浅 水底质、沉水植物和藻华水体的反射率会影响 离水反射率。因此,若要精确反演悬浮物浓度, 则需消除这些因素的影响。结果表明,基于短波 红外波段的 Vanhellemont 和 Ruddick 算法在乌梁 素海具有一定的适用性。

参考文献

- Berk A, Bernstein L S, Anderson G P, et al. MOD-TRAN Cloud and Multiple Scattering Upgrades with Application to AVIRIS [J]. Remote Sensing of Environment, 1998, 65(3): 367–375.
- [2] Vermodte E F, Tanre D. Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An Overview [J]. *IEEE Transactions on Geoscience and Remote Sensing*, 1997, **35**(3): 675–686.
- [3] Hu Y, Liu L Y, Liu L L, et al. A Landsat-5 Atmospheric Correction Based on MODIS Atmosphere Products and 6S Model [J]. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote* Sensing, 2014, 7(5): 1609–1615.
- [4] Roy D P, Qina Y, Kovalskyy V, et al. Conterminous United States Demonstration and Characterization of MODIS-based Landsat ETM+ Atmospheric Correction [J]. *Remote Sensing of Environment*, 2014, 140: 433–449.
- [5] 周莉,李云梅,郭宇龙,等.基于辐射传输优化模型的二类水体大气校正 [J]. 光学学报, 2014, 34(2): 7-15.
- [6] Bonansea M, Ledesmab C, Rodriguez C, et al. Effects of Atmospheric Correction of Landsat Imagery on Lake Water Clarity Assessment [J]. Advances in Space Research, 2015, 56(11): 2345–2355.

- [7] Gordon H R, Wang M H. Retrieval of Water-leaving Radiance and Aerosol Optical Thickness over the Oceans with SeaWiFS: A Preliminary Algorithm [J]. Applied Optics, 1994, 33(3): 443–452.
- [8] Gordon H R. Atmospheric Correction of Ocean Color Imagery in the Earth Observing System Era [J]. Journal Geophysical Research, 1997, 102(17): 81– 106.
- [9] Wang M H, Shi W. The NIR-SWIR Combined Atmospheric Correction Approach for MODIS Ocean Color Data Processing [J]. Optics Express, 2007, 15(24): 15722–15733.
- [10] Wang M H, Son S H, Shi W. Evaluation of MODIS SWIR and NIR-SWIR Atmospheric Correction Algorithms Using SeaDASS Data [J]. Remote Sensing of Environment, 2009, 113(3): 635–644.
- [11] Chen S G, Zhang T L, Hu L B. Evaluation of the NIR-SWIR Atmospheric Correction Algorithm for MODIS-Aqua over the Eastern China Seas [J]. International Journal of Remote Sensing, 2014, 35(11– 12): 4239–4251.
- [12] He Q J, Chen C Q. A New Approach for Atmospheric Correction of MODIS Imagery in Turbid Coastal Waters: A Case Study for the Pearl River Estuary [J]. *Remote Sensing Letters*, 2014, 5(3): 249–257.
- [13] Wang M H, Son S H, Zhang Y L, et al. Remote Sensing of Water Optical Property for China's Inland Lake Taihu Using the SWIR Atmospheric Correction With 1640 and 2130 nm Bands [J]. *IEEE Journal of* Selected Topics in Applied Earth Observations and Remote Sensing, 2013, 6(6): 2505–2516.
- [14] Chen J, Cui T W, Lin C S. An Improved SWIR Atmospheric Correction Model: A Cross-Calibration-Based Model [J]. *IEEE Transactions on Geoscience* and Remote Sensing, 2014, **52**(7): 3959–3967.
- [15] Zhang M W, Ma R H, Li J S, et al. A Validation Study of an Improved SWIR Iterative Atmospheric Correction Algorithm for MODIS-Aqua Measurements in Lake Taihu, China [J]. *IEEE Transactions on Geoscience and Remote Sensing*, 2014, 52(8): 4686–4695.
- [16] He X Q, Pan D L, Mao Z H. Atmospheric Correction of SeaWiFS Imagery for Turbid Coastal and Inland Waters [J]. Acta Oceanologica Sinica, 2004, 23(4): 609–615.

- [17] Roy D P, Wulderb M A, Loveland T R, et al. Landsat-8: Science and Product Vision for Terrestrial Global Change Research [J]. Remote Sensing of Environment, 2014, 145: 154-172.
- [18] Ding H M, Shi J S, Wang Y F, et al. An Improved Dark-object Subtraction Technique for Atmospheric Correction of Landsat 8 [C]. SPIE, 2015, 9815: 98150K.
- [19] Concha J A, Schott J R. A Model-based ELM for Atmospheric Correction over Case 2 Water with Landsat 8 [C]. SPIE, 2014, 9111: 911112.
- [20] Vanhellemont Q, Ruddick K. Turbid Wakes Associated with Offshore Wind Turbines Observed with Landsat 8 [J]. Remote Sensing of Environment, 2014, 145: 105-115.
- [21] Vanhellemont Q, Ruddick K. Advantages of High Quality SWIR Bands for Ocean Colour Processing: Examples from Landsat-8 [J]. Remote Sensing of Environment, 2015, 161: 89-106.
- [22] Concha J A, Schott J R. Atmospheric Correction for Landsat 8 over Case 2 Waters [C]. SPIE, 2015, 9607: 96070R.
- (上接第20页)

参考文献

- [7] Kwee P, Willke B, Danzmann K. Shot-noise-limited Laser Power Stabilization with a High-power Photodiode Array [J]. Opt Lett, 2006, 34(19): 2912-2914.
- [8] Alouini M, Benazet B, Vallet M. Offset Phase Locking of Er,Yb:glass Laser Eigenstates for RF Photonics Applications [J]. IEEE Photon Technol Lett, 2001, **13**(4): 367–369.
- [9] Valling S, Stahlberg B, Lindbergn A M. Tunable Feedback Loop for Suppression of Relaxation Oscillations in a Diode-pumped Nd:YVO₄ Laser [J]. Opt Laser Technol, 2007, 39(1): 82-85.
- [10] Shevy Y, Shevy D, Lee R, et al. Slow Light Laser Oscillator [C]. San Diego: Optical Fiber Communication Conference, 2010.
- [11] Leeuwen R V, Xu B, Watkins L S, et al. Low Noise High Power Ultra-stable Diode Pumped Er-Yb Phosphate Glass Laser [C]. SPIE, 2008, 6975: 69750K.
- [12] Pan Z Q, Zhou J, Yang F, et al. Low-frequency Noise Suppression of a Fiber Laser Based on a Round-trip

- [23] Concha J A. Landsat-8's Atmospheric Correction in SeaDAS: Comparison with AERONET-OC [C]. SPIE, 2016, 9972: 997212.
- [24] Wang Y J, Liu L Y, Hu Y, et al. Development and Calidation of the Landsat-8 Surface Reflectance Products Using a MODIS-based Per-pixel Atmospheric Correction Method [J]. International Journal of Remote Sensing, 2016, **37**(6): 1291–1314.
- [25] Peng Y, He G J, Zhang Z M, et al. Study on Atmospheric Correction Approach of Landsat-8 Imageries Based on 6S Model and Look-up Table [J]. J Appl Remote Sens, 10(4): 045006.
- [26] 于瑞宏, 李畅游, 刘廷玺, 等. 乌梁素海湿地环境 的演变 [J]. 地理学报, 2004, 59(6): 948-955.
- [27] Nechad B, Ruddick K, Park Y. Calibration and Validation of a Generic Multisensor Algorithm for Mapping of Total Suspended Matter in Turbid Waters [J]. Remote Sensing of Environment 2010, 114: 854-866.

EDFA Power Stabilizer [J]. Laser Phys, 2013, 23(3): 035105.

- [13] Feng Z M, Li C, Xu S H, et al. Significant Intensity Noise Suppression of Single-frequency Fiber Laser via Cascading Semiconductor Optical Amplifier [J]. Laser Phys Lett, 2015, **12**(9): 095101.
- [14] Li C, Xu S H, Huang X, et al. All-optical Frequency and Intensity Noise Suppression of Single-frequency Fiber Laser [J]. Opt Lett, 2015, 40(9): 1964–1967.
- [15] Danion G, Bondu F, Loas G, et al. GHz Bandwidth Noise Eater Hybrid Optical Amplifier: Design Guidelines [J]. Opt Lett, 2014, 39(14): 4239-4242.
- [16] Yamada M, Takeuchi N, Sakumoto K, et al. Variation of Relative Intensity Noise with Optical Power in InGaAsP Semiconductor Optical Amplifier [J]. IEEE Photon Technol Lett, 2012, 24(22): 2049–2051.
- [17] Xu D, Yang F, Chen D J, et al. Laser Phase and Frequency Noise Measurement by Michelson Interferometer Composed of a 3*3 Optical Fiber Coupler [J]. Opt Express, 2015, 23(17): 22386–22393.

30